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Cuprins

Introducere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1 Corpul numerelor reale 7
1.1 Corpuri normate . . . . . . . . . . . . . . . . . . . . . . . . . 8

Corpuri ne-arhimediene . . . . . . . . . . . . . . . . . . . . . . 11
Clasificarea normelor pe Q . . . . . . . . . . . . . . . . . . . . 14

1.2 Corpul numerelor p-adice . . . . . . . . . . . . . . . . . . . . . 16
Completarea unui corp normat . . . . . . . . . . . . . . . . . . 16
Numerele ı̂ntregi p-adice . . . . . . . . . . . . . . . . . . . . . 19

Bibliografie 28
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integralelor generalizate . . . . . . . . . . . . . . . . . . . . . 91
Integrale de tipul

∫ +∞
−∞ eth(x)dx . . . . . . . . . . . . . . . . . . 96

Integrale de tipul
∫ +∞

0
e−txxλg(x)dx . . . . . . . . . . . . . . . 99

Integrale de tipul
∫ β
α
e−tx

2
h(x)dx . . . . . . . . . . . . . . . . . 104

3.3 Formula lui Stirling . . . . . . . . . . . . . . . . . . . . . . . . 105

Bibliografie 107

4 Algoritmi de integrare utilizaţi ı̂n tehnica de calcul 109
4.1 Extinderi de corpuri . . . . . . . . . . . . . . . . . . . . . . . 110

Corpuri Liouville . . . . . . . . . . . . . . . . . . . . . . . . . 113
4.2 Principiul Laplace-Liouville . . . . . . . . . . . . . . . . . . . 118
4.3 Cazuri particulare . . . . . . . . . . . . . . . . . . . . . . . . . 120

Integrarea expresiilor de forma A0w + A1 . . . . . . . . . . . . 121
Integrarea unui polinom ı̂n w . . . . . . . . . . . . . . . . . . 128

Bibliografie 134



Introducere



6



Capitolul 1

Corpul numerelor reale

Corpul numerelor reale este un corp comutativ total ordonat (R,+, ·,≤) ı̂n
care orice mulţime nevidă şi mărginită superior are margine superioară. Pe
acest corp putem să definim norma modul cu ajutorul relaţiei de ordine:
mod : R→ R+ definită prin

mod(x) =

{
x, dacă x ≥ 0
−x, dacă x < 0

, ∀x ∈ R.

Această normă este compatibilă cu structura de corp a lui R, adică ı̂ndepli-
neşte proprietăţile:

1). mod(x) = 0⇔ x = 0,
2). mod(x+ y) ≤ mod(x) + mod(y),∀x, y ∈ R.
3). mod(x · y) = mod(x) ·mod(y),∀x, y ∈ R,
Ştim că (R,mod) este un spaţiu normat complet. Acest spaţiu este com-

pletat al subcorpului numerelor raţionale Q (rezultatul este consecinţă a
modelului lui Cantor, model ı̂n care construieşte R ca şi completat al lui Q).
Ne putem pune ı̂ntrebarea dacă pe Q mai există şi alte norme de corp şi, ı̂n
cazul unui răspuns afirmativ, ce se obţine prin completarea lui Q ı̂n raport
cu astfel de norme.

În acest capitol vom determina şi vom clasifica toate normele de corp
pe mulţimea numerelor raţionale. Vom demonstra teorema de clasificare a
lui Ostrowski care afirmă că singura normă arhimediană de corp pe Q este
norma modul şi drept norme ne-arhimediene putem găsi norma trivială şi
normele p-adice. În al doilea paragraf al capitolului vom construi modelul
ne-arhimedian al mulţimii numerelor reale prin completarea lui Q ı̂n raport
cu o normă p-adică.
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8 Capitolul 1. Corpul numerelor reale

1.1 Corpuri normate

Vom ı̂ncepe acest paragraf cu câteva rezultate generale despre corpurile nor-
mate.

1.1.1 Definiţie. Fie (K,+, ·) un corp comutativ; vom nota cu 0 şi respec-
tiv 1 elementele neutre ale lui K ı̂n raport cu operaţiile de adunare şi de
ı̂nmulţire. În cele ce urmează 0 şi 1 vor nota elementele neutre de la adunare
şi de la ı̂nmulţire respectiv pe mulţimea numerelor reale R.

O normă de corp pe K este o aplicaţie | · | : K → R+ care verifică
proprietăţile următoare de compatibilitate cu structura de corp:

1). |x| = 0⇔ x = 0,

2). |x+ y| ≤ |x|+ |y|,∀x, y ∈ K,
3). |x · y| = |x| · |y|,∀x, y ∈ K.
Perechea ordonată (K, | · |) formată dintr-un corp comutativ K şi o normă

de corp | · | pe K se numeşte corp normat.

1.1.2 Observaţii. (i). Prezentăm câteva consecinţe imediate ale definiţiei
de mai sus, lăsând demonstraţiile pe seama cititorilor.

1. | − x| = |x|,∀x ∈ K,
2. |x−1| = 1

|x|
,∀x ∈ K \ {0},

3. |1| = 1.

(ii). Nu trebuie confundată noţiunea de normă de corp cu aceea de normă
pe un spaţiu vectorial. Proprietăţile 1). şi 2). din definiţia de mai sus sunt
comune ı̂nsă proprietatea a treia diferenţiază net cele două noţiuni, aşa cum
vom putea observa din cele ce urmează. Totuşi, ca şi normele pe spaţii
vectoriale, normele de corp permit construcţia unor metrici.

1.1.3 Definiţie. Fie (K, | · |) un corp normat; aplicaţia d|·| : K ×K → R+

definită prin d|·|(x, y) = |x−y|,∀x, y ∈ K este o metrică pe K; d|·| se va numi
metrica indusă de norma | · | iar topologia indusă de această metrică, τd|·|
se va nota cu τ|·| şi se va numi topologia indusă de norma de corp | · |.

1.1.4 Definiţie. Fie K un corp comutativ; două norme de corp pe K, | · |1
şi | · |2, se numesc norme echivalente dacă topologiile induse de cele două
norme coincid: τ|·|1 = τ|·|2 ; vom nota această situaţie cu | · |1 ∼ | · |2.
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O primă diferenţă ı̂ntre normele de spaţii vectoriale şi cele de corpuri o
putem remarca din teorema următoare ı̂n care se caracterizează normele de
corp echivalente.

1.1.5 Teoremă. Fie | · |1 şi | · |2 două norme de corp pe K; următoarele
afirmaţii sunt echivalente:

1). | · |1 ∼ | · |2,

2). |x|1 < 1⇔ |x|2 < 1,

3). ∃ α > 0 aşa fel ı̂ncât |x|1 = |x|α2 ,∀x ∈ K.

miDemonstraţie. 1) =⇒ 2) : Presupunem că | · |1 ∼ | · |2 şi fie x ∈ K;

şirul (xn)n∈N∗ este convergent ı̂n raport cu topologia τ|·|1 ≡ τ1 la 0 dacă şi
numai dacă |x|n1 → 0 ceea ce este echivalent cu a spune că |x|1 < 1. Deoarece
τ1 = τ2 ≡ τ|·|2 , rezultă că:

{x ∈ K : |x|1 < 1} = {x ∈ K : xn
τ1−→ 0} =

= {x ∈ K : xn
τ2−→ 0} = {x ∈ K : |x|2 < 1}

ceea ce ı̂ncheie demonstraţia acestei implicaţii.

2) =⇒ 3) : a). Dacă ∀x ∈ K∗ = K \ {0}, |x|1 = 1, atunci avem şi

|x|2 = 1,∀x ∈ K∗ şi deci 3). este verificată cu orice α > 0. Într-adevăr, dacă
ar exista un x ∈ K∗ a.̂ı. |x|2 6= 1 atunci sau |x|2 < 1 şi deci, din 2), |x|1 < 1,
ceea ce este absurd, sau |x|2 > 1 deci |x−1|2 < 1 şi deci |x−1|1 < 1, ceea ce
este iarăşi absurd.

b). Să presupunem acum că ∃a ∈ K∗ a.̂ı. |a|1 6= 1. Putem presupune
fără să restrângem generalitatea că |a|1 > 1.

∀x ∈ K∗,∃β =
ln |x|1
ln |a|1

a.̂ı. |x|1 = |a|β1 .

Acum, ∀n,m ∈ Z cu n
m
> β, |x|1 < |a|

n
m
1 sau, echivalent,

∣∣∣∣xman
∣∣∣∣
1

< 1; rezultă

atunci din 2) că

∣∣∣∣xman
∣∣∣∣
2

< 1 sau echivalent |x|2 < |a|
n
m
2 . Cum

n

m
este un număr

raţional arbitrar mai mare decât β rezultă că |x|2 ≤ |a|β2 .



10 Capitolul 1. Corpul numerelor reale

Raţionăm similar pentru numere raţionale mai mici decât β şi obţinem şi

inegalitatea inversă şi deci |x|2 = |a|β2 . Atunci β =
ln |x|2
ln |a|2

şi deci

ln |x|2
ln |a|2

=
ln |x|1
ln |a|1

.

Deci |x|2 = |x|α1 unde α =
ln |a|2
ln |a|1

.

3) =⇒ 1) : Un şir (xn)n ⊆ K este convergent ı̂n raport cu | · |1 la x ∈ K
dacă şi numai dacă |xn − x|1 = |xn − x|α2 → 0 şi deci dacă şi numai dacă
(xn)n este convergent la x ı̂n raport cu norma | · |2. Topologiile generate de
cele două norme au aceleaşi şiruri convergente şi deci coincid.

�

1.1.6 Corolar. Dacă normele de corp | · |1 şi | · |2 pe K sunt echivalente
atunci: |x|1 = 1⇔ |x|2 = 1.

1.1.7 Observaţie. Remarcăm că, dacă două norme de corp sunt echiva-
lente, sferele cu centrul ı̂n origine de rază 1 au aceeaşi “coajă”. Normele
de spaţii vectoriale nu au această proprietate geometrică. Ne reamintim

de exemplu că pe R2 norma euclidiană ‖x‖2 =
√
x2

1 + x2
2 şi norma ‖x‖1 =

|x1|+ |x|2,∀x = (x1, x2) ∈ R2 sunt echivalente. Însă, ı̂n timp ce “coaja” sferei
unitate pentru prima este un cerc cu centrul ı̂n origine, “coaja” sferei unitate
pentru a doua este un pătrat cu centrul ı̂n origine şi cu laturile paralele cu
cele două bisectoare.

1.1.8 Definiţie. Fie K un corp comutativ şi fie K0 intersecţia tuturor sub-
corpurilor lui K; K0 se numeşte corpul prim al corpului K.

Pentru orice k ∈ N∗, k · 1 = 1 + · · ·+ 1︸ ︷︷ ︸
k−ori

iar 0 · 1 = 0; dacă k ∈ Z \ N atunci

k · 1 = −(−k · 1). Evident, {k · 1 : k ∈ Z} ⊆ K0. Aplicaţia ϕ : Z → K0,
definită prin ϕ(k) = k · 1,∀k ∈ Z, este un homomorfism de inele. Deoarece
K este corp, subinelul ϕ(Z) ⊆ K0 nu are divizori ai lui 0 şi astfel nucleul
homomorfismului ϕ, kerϕ = {k ∈ Z : k ·1 = 0} este un ideal prim ı̂n Z (kerϕ
= ideal: ∀l ∈ Z,∀k ∈ kerϕ, l · k ∈ kerϕ; kerϕ = ideal prim: ∀k, l ∈ Z cu
k · l ∈ kerϕ sau k ∈ kerϕ sau l ∈ kerϕ). Avem două situaţii posibile:
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I. Dacă kerϕ = {0} atunci ϕ este injecţie şi deci un izomorfism de inele
ı̂ntre Z şi ϕ(Z). Atunci corpul prim K0 conţine un inel izomorf cu Z şi deci
K0 conţine un corp izomorf cu Q. Cum K0 este cel mai mic sub-corp al lui
K, K0 ≡ Q.

II. Dacă kerϕ 6= {0} atunci există un n ∈ Z∗ a.̂ı. n · 1 = 0; fie n =
pα1

1 · · · pαrr descompunerea unică a lui n ı̂n factori primi. Deoarece kerϕ este
ideal prim, există un număr prim p a.̂ı. p ·1 = 0. Pentru orice alt număr prim
q diferit de p există m,n ∈ Z a.̂ı. m ·p+n · q = 1. Atunci (m ·p+n · q) ·1 = 1
de unde n · q 6= 0. Astfel p este unicul număr prim care se găseşte ı̂n kerϕ.
Rezultă atunci că kerϕ = p · Z de unde K0 ≡ Zp = Z/p·Z.

Concluzia acestei analize o fixăm ı̂n următorul corolar.

1.1.9 Corolar. Corpul prim al unui corp comutativ este sau corpul nu-
merelor raţionale sau un corp de clase de resturi modulo un număr prim.

Corpuri ne-arhimediene

1.1.10 Definiţie. O normă | · | pe un corp K se numeşte normă ne-
arhimediană sau ultrametrică dacă verifică condiţiile 1) şi 3) din definiţia
1.1.1, dar, ı̂n locul condiţiei 2), verifică condiţia mai tare:

2′). |x+ y| ≤ max{|x|, |y|},∀x, y ∈ K.
Dacă | · | este o normă ne-arhimediană pe corpul K atunci spunem că

(K, | · |) este un corp ne-arhimedian sau ultrametric.
O normă de corp |·| pe K care nu este ne-arhimediană se numeşte normă

arhimediană iar (K, | · |) se numeşte corp arhimedian. Astfel o normă | · |
pe K este arhimediană dacă verifică condiţiile 1), 2) şi 3) din definiţia 1.1.1
şi există două elemente x, y ∈ K pentru care:

|x+ y| > max{|x|, |y|}.

1.1.11 Exemple. (i) Fie K un corp comutativ arbitrar; definim
| · |0 : K → R+ prin

|x|0 =

{
0, x = 0
1, x ∈ K \ {0} ,∀x ∈ K.

Atunci | · |0 este o normă ne-arhimediană pe K.
Această normă se numeşte norma trivială pe K.
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(ii) Fie p un număr prim; ∀x ∈ Q∗ există un unic n ∈ Z a.̂ı. x = pn · a
b

,

unde a, b ∈ Z∗ sunt două numere prime cu p. Definim atunci

|x|p =
1

pn
= p−n şi |0|p = 0.

Aplicaţia | · |p : Q→ R+ este o normă ne-arhimediană pe Q.

Într-adevăr, condiţia 1) din definiţia 1.1.1 este evident ı̂ndeplinită; fie

acum un alt element y = pm · c
d
∈ Q∗ unde c, d ∈ Z∗ sunt prime cu p.

Presupunem că n < m; atunci x+y = pn
ad+ pm−nbc

bd
. Deoarece ad+pm−nbc

şi bd sunt prime cu p,

|x+ y|p =
1

pn
= max

{
1

pn
,

1

pm

}
= max{|x|p, |y|p}.

Dacă n > m se raţionează similar.

Dacă n = m atunci x+y = pn
ad+ bc

bd
; atunci există l ≥ n a.̂ı. x+y = pl

e

bd
unde e şi bd sunt prime cu p. Rezultă că

|x+ y|p = p−l ≤ p−n = max{|x|p, |y|p}.

În sfârşit să verificăm condiţia 3) a definiţiei 1.1.1; x ·y = pm+nac

bd
şi, cum

ac şi bd sunt prime cu p,

|x · y|p =
1

pm+n
= |x|p · |y|p.

Normele | · |p se numesc norme p-adice pe Q.
(iii) Norma modul pe R este o normă arhimediană de corp.

1.1.12 Observaţie. Folosind proprietăţile 1. şi 3. date ı̂n cadrul punctului
(i) al observaţiei 1.1.2, rezultă că, ı̂ntr-un corp ne-arhimedian (K, | · |),

|k · 1| ≤ 1,∀k ∈ Z.

Vom arăta, ı̂n teorema următoare, că această proprietate caracterizează nor-
mele ne-arhimediene pe un corp.
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1.1.13 Teoremă. Un corp normat (K, | · |) este ne-arhimedian dacă şi
numai dacă |n · 1| ≤ 1,∀n ∈ N.

Demonstraţie. Necesitatea condiţiei a fost deja anunţată ı̂n observaţia
precedentă. Într-adevăr, dacă norma | · | este ne-arhimediană atunci, pentru
orice n ∈ N, |n · 1| = | 1 + · · ·+ 1︸ ︷︷ ︸

n ori

| ≤ max{|1|, · · · , |1|} = 1.

Să presupunem acum că |n · 1| ≤ 1,∀n ∈ N; ∀x, y ∈ K, ∀n ∈ N.,

|x+ y|n = |(x+ y)n| = |xn + C1
n · xn−1 · y + · · ·+ Cn

n · yn| ≤

≤ |x|n+ |C1
n ·1| · |x|n−1 · |y|+ · · ·+ |Cn

n ·1| · |y|n ≤ |x|n+ |x|n−1 · |y|+ · · ·+ |y|n ≤

≤ (n+ 1) ·max {|x|, |y|}n ,

de unde

|x+ y| ≤ (n+ 1)
1
n ·max{|x|, |y|},∀n ∈ N.

Dacă ı̂n relaţia de mai sus facem n→ +∞ obţinem:

|x+ y| ≤ max{|x|, |y|}, ∀x, y ∈ K.

Aceasta arată că norma | · | este ne-arhimediană.
�

1.1.14 Corolar. (K, | · |) este corp arhimedian dacă şi numai dacă există
n0 ∈ N aşa fel ı̂ncât |n0 · 1| > 1.

1.1.15 Observaţii. (i) Cu notaţiile din corolarul precedent, observăm că
|np0 · 1| = |(n0 · 1)p| = |n0 · 1|p −−−→

p→∞
+∞. Rezultă că un corp normat

(K, | · |) este arhimedian dacă şi numai dacă mulţimea N · 1 = {n · 1 : n ∈ N}
(“numerele naturale” ale lui K) este nemărginită superior ı̂n normă.

(ii) Dacă corpul prim al lui K este un corp de clase de resturi modulo
numărul prim p (vezi corolarul 1.1.9) atunci orice normă de corp pe K este
ne-arhimediană.

Într-adevăr, ı̂n acest caz, N · 1 = {n · 1 : n ∈ N} = {0, 1, · · · , (p− 1) · 1}
este o mulţime finită şi astfel nu poate fi nemărginită ı̂n nici-o normă | · | pe
K. Observaţia de mai sus ne asigură că | · | este ne-arhimediană.
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Clasificarea normelor pe Q
Teorema următoare dă o caracterizare completă a normelor de corp pe Q.

1.1.16 Teoremă (teorema lui Ostrowski).
a). Dacă | · | este o normă arhimediană pe Q atunci există α ∈ (0, 1] a.̂ı.

|x| = (mod(x))α,∀x ∈ Q.

b). Dacă | · | este o normă ne-arhimediană pe Q atunci sau | · | este norma
trivială sau există α > 0 şi un număr prim p aşa fel ı̂ncât

|x| = |x|αp ,∀x ∈ K.

mi Demonstraţie. În enunţul teoremei “mod” este norma modul pe Q
definită ı̂n introducerea acestui capitol, | · |p este norma p-adică pe Q definită
ı̂n exemplul 1.1.11, (ii) iar norma trivială este definită ı̂n 1.1.11, (i).

a). Fie | · | o normă arhimediană pe Q. Pentru orice x ∈ N,

(1) |x · 1| = |x · 1| = |x| = | 1 + · · ·+ 1︸ ︷︷ ︸
x ori

| ≤ |1|+ · · ·+ |1|︸ ︷︷ ︸
x ori

= x.

Conform corolarului 1.1.14 există a ∈ N a.̂ı. |a| > 1; evident că a ≥ 2.

Atunci din (1), |a| ≤ a, de unde, dacă notăm cu α =
ln |a|
ln a

∈ (0, 1], rezultă

(2) |a| = aα.

Pentru orice n ∈ N∗ există k ∈ N∗ aşa fel ı̂ncât ak−1 ≤ n < ak; atunci
numărul n admite o scriere ı̂n baza a de forma n = x0 + x1a + · · ·xk−1a

k−1,
unde, ∀i = 0, · · · k − 1, 0 ≤ xi ≤ a− 1 şi xk−1 ≥ 1. Din (1) şi (2) rezultă că

|n| ≤ |x0|+ |x1| · |a|+ · · ·+ |xk−1| · |a|k−1 ≤ x0 + x1a
α + · · ·xk−1a

α(k−1) ≤

≤ (a− 1) · (1 + aα + · · · a(k−1)α) = (a− 1) · a
kα − 1

aα − 1
<

< (a− 1) · akα

aα − 1
=

(a− 1) · aα

aα − 1
· a(k−1)α ≤ (a− 1) · aα

aα − 1
· nα = A · nα.

Deci

(3) |n| ≤ A · nα,∀n ∈ N.
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Înlocuind ı̂n (3) pe n cu nm obţinem |nm| = |n|m ≤ A · nmα, de unde

(4) |n| ≤ m
√
A · nα,∀m ∈ N.

Dacă ı̂n (4) m→ +∞,

(5) |n| ≤ nα,∀n ∈ N.

Fie acum b ∈ N, 0 < b ≤ ak − ak−1 a.̂ı. n = ak − b. Din (2) obţinem

(6) |n| ≥ |ak| − |b| = akα − |b|

şi din (5)

(7) |b| ≤ bα ≤ (ak − ak−1)α.

În sfârşit (6) şi (7) ne conduc la

|n| ≥ akα − (ak − ak−1)α =

[
1−

(
1− 1

a

)α]
· akα = B · akα

sau

(8) |n| > B · nα.

Din (8), trecând iar n ı̂n nm, obţinem |n|m > B · nmα sau

(9) |n| ≥ m
√
B · nα.

Dacă ı̂n (9) m→ +∞ ajungem la

(10) |n| ≥ nα, ∀n ∈ N.

(5) şi (10) conduc la

(11) |n| = nα = (mod(n))α ,∀n ∈ N.

Din (11), ∀k ∈ Z \ N,

(12) |k| = | − k| = (mod(−k))α = (mod(k))α.
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Acum, utilizând (12), ∀x =
k

n
∈ Q (unde k ∈ Z, n ∈ N∗),

|x| = |k · n−1| = |k| · 1

|n|
=

(mod(k))α

(mod(n))α
=

(
mod

(
k

n

))α
= (mod(x))α.

b). Fie | · | o normă ne-arhimediană şi netrivială; din teorema 1.1.13,
|n| ≤ 1,∀n ∈ N. Dacă am presupune că |n| = 1, ∀n ∈ N∗, atunci, ∀x ∈
Q∗, |x| = 1 ceea ce ar ı̂nsemna că norma | · | este norma trivială.

Există deci n0 ∈ N∗ a.̂ı. 0 < |n0| < 1. Utilizând descompunerea lui n0

ı̂n factori primi deducem că există un număr prim p, a.̂ı. 0 < |p| < 1. Fie

α = − ln |p|
ln p

> 0; atunci

(13) |p| = p−α.

Oricare ar fi n ∈ Z∗, n nedivizibil cu p, există q, s ∈ Z a.̂ı. q ·n+ s ·p = 1.
Dacă presupunem că |n| < 1, cum |q| ≤ 1 şi |s| ≤ 1 rezultă că

|1| = |q · n+ s · p| ≤ max{|q||n|, |s||p|} < 1

ceea ce este absurd.
Deci orice număr n ∈ Z∗ prim cu p are norma 1. Fie atunci x = pk ·m

n
∈ Q,

unde m şi n sunt prime cu p; rezultă din (13) că

|x| = |p|k = p−kα = |x|αp .

�

1.1.17 Observaţie. Ţinând cont de teorema 1.1.5, teorema lui Ostrowski
se poate reformula:

a). Orice normă arhimediană pe Q este echivalentă cu norma modul.
b). Orice normă ne-arhimediană pe Q este sau norma trivială sau este

echivalentă cu o normă p-adică.

1.2 Corpul numerelor p-adice

Completarea unui corp normat

Vom ı̂ncepe acest paragraf cu o teoremă de completare a corpurilor normate.
Aşa cum am menţionat ı̂n definiţia 1.1.3, pe orice corp normat (K, | · |) se
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poate defini o metrică prin d|·|(x, y) = |x − y|. Dacă spaţiul metric (K, d|·|)
este complet vom spune că (K, | · |) este un corp normat complet. Dacă
nu, dintr-un rezultat de completare a spaţiilor metrice (teorema lui Haus-
dorff), spaţiul metric (K, d|·|) admite un completat unic până la o izometrie;
teorema următoare arată că, ı̂n cazul corpurilor normate, completatul este
de asemenea un corp normat iar izometria de mai sus este şi izomorfism de
corpuri.

1.2.1 Teoremă. Pentru orice corp normat (K, | · |) există un corp normat

complet (K̂, | · |̂) şi un homomorfism de corpuri i : K → K̂ aşa fel ı̂ncât i

este izometrie ı̂ntre K şi i(K) iar i(K) este dens ı̂n K̂.

Corpul (K̂, | · |̂) este unic p̂ınă la un izomorfism izometric de corpuri
normate.

miDemonstraţie. Vom prezenta numai o schiţă de demonstraţie.
Un şir (xn)n ⊆ (K, | · |) este şir Cauchy dacă |xn − xm| −−−−−→

n,m→+∞
0.

Fie K = {(xn)n : (xn)n = şir Cauchy ı̂n K}.
Dacă K este complet atunci K coincide cu mulţimea şirurilor convergente

pe K; ı̂n acest caz K̂ = K, |̂ · | = | · | şi i va fi aplicaţia identică.
Dacă există şiruri Cauchy divergente ı̂n K atunci definim pe K două

operaţii prin:

(xn)n + (yn)n = (xn + yn)n şi (xn)n · (yn)n = (xn · yn)n.

Cu aceste operaţii K este un inel comutativ cu unitate. Mulţimea O =
{(xn)n : xn → 0} este un ideal maximal ı̂n K. Atunci inelul cât K̂ = K/O este
un corp; un element al acestui spaţiu x̂ = [(xn)] = {(yn)n ∈ K : xn−yn → 0}.

Fie i : K → K̂, i(x) = [x̄], unde x̄ este şirul constant cu termenul general
x (i(x) este mulţimea tuturor şirurilor convergente ı̂n K la x). Aplicaţia i
este un homomorfism de corpuri.

Pentru orice x̂ = [(xn)] ∈ K̂, (|xn|)n este şir Cauchy ı̂n R şi deci există
limn→∞ |xn| ∈ R; această limită nu depinde de şirul reprezentant (xn)n.

Putem defini consistent | · |̂ : K̂ → R+ prin |x̂|̂ = limn→∞ |xn|.
Se arată uşor că | · |̂ este o normă de corp pe K̂ şi că i este o izometrie

ı̂ntre K şi i(K).

Fie x̂ = [(xn)] ∈ K̂;∀ε > 0,∃n0 ∈ N a.̂ı. ∀n,m ≥ n0, |xn − xm| < ε
2
.

Atunci elementul |x̂|0̂ = [x̄n0 ] ∈ i(K) şi |x̂− x̂0|̂ = limn |xn − xn0| ≤ ε
2
< ε.
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Rezultă că i(K) = K̂.

Fie (x̂p)p ⊆ (K̂, | · |̂) un şir Cauchy: ∀ε > 0,∃p0 ∈ N a.̂ı. ∀p, q ≥ p0,

|x̂p− x̂q|̂ < ε
3
. Cum i(K) este dens ı̂n K̂, ∀p ∈ N,∃xp ∈ K a.̂ı. |i(xp)− x̂p|̂ <

1
p
. Fie p1 ≥ p0 a.̂ı. 1

p
< ε

3
,∀p ≥ p1. Atunci, ∀p, q ≥ p1,

|xp − xq| = |i(xp)− i(xq)|̂ ≤ |i(xp)− x̂p|̂ + |x̂p − x̂q|̂ + |x̂q − i(xq)|̂ <
<

1

p
+
ε

3
+

1

q
< ε.

Rezultă că şirul (xp)p ⊆ K este şir Cauchy şi deci x̂ = [(xp)] ∈ K̂. În plus

|x̂− x̂p|̂ ≤ |x̂− i(xp)|̂ + |i(xp)− x̂p|̂ ≤ 1

p
+ lim

q
|xp − xq| −−−→

p→∞
0.

Deci (K̂, | · |̂) este un corp normat complet care conţine un subcorp dens ce
este izomorf şi izometric cu K.

Unicitatea se demonstrează ca şi ı̂n cazul unicităţii teoremei lui Hausdorff.

�

1.2.2 Definiţie. Corpul (K̂, | · |̂) construit ı̂n teorema precedentă se nu-
meşte completatul corpului (K, | · |); aşa cum am observat ı̂n teoremă,
completatul este unic până la un izomorfism izometric de corpuri normate.

1.2.3 Observaţii. (i) Corpul (K, | · |) este ne-arhimedian dacă şi numai

dacă completatul său (K̂, | · |̂) este ne-arhimedian.

Într-adevăr, dacă (K, | · |) este ne-arhimedian, atunci, ∀x̂, ŷ ∈ K̂,∀ε >
0,∃x, y ∈ K a.̂ı. |i(x)− x̂|̂ < ε şi |i(y)− ŷ|̂ < ε. Atunci

|x̂+ ŷ|̂ ≤ |x̂−i(x)+i(x)+i(y)−i(y)+ ŷ|̂ ≤ |x̂−i(x)|̂+ |x+y|+ |ŷ−i(y)|̂ <
< 2ε+ max{|x|, |y|} ≤ 2ε+ max{ε+ |x̂|̂, ε+ |ŷ|̂} < 3ε+ max{|x̂|̂, |ŷ|̂}.

Reciproca afirmaţiei este evidentă.
(ii) Din teorema 1.1.5, 3) remarcăm că, dacă | · |1 şi | · |2 sunt două norme

echivalente pe corpul K atunci ele sunt uniform echivalente (au aceleaşi şiruri
Cauchy). Rezultă imediat din demonstraţia teoremei anterioare că | · |1̂ ∼ |·|2̂
pe corpul K̂ = K/O.

Deci completatul lui K ı̂n raport cu | · |1 este acelaşi cu completatul ı̂n
raport cu | · |2 iar normele corespunzătoare lui | · |1 şi | · |2 pe acest completat
sunt echivalente.
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(iii) Conform teoremei lui Ostrowski orice normă arhimediană pe Q este
echivalentă cu norma modul. Rezultă din observaţia de mai sus că avem un
singur completat arhimedian al lui Q şi acesta este mulţimea numerelor reale
(vezi modelul lui Cantor pentru mulţimea numerelor reale).

Orice normă ne-arhimediană este sau norma trivială sau una dintre nor-
mele p-adice. Norma trivială induce pe Q metrica discretă ı̂n raport cu care
Q este spaţiu metric complet şi deci corp normat complet.

În cele ce urmează vom construi completatul Qp al lui Q ı̂n raport cu
normele p-adice. Acest completat se numeşte corpul numerelor p-adice şi
joacă, ı̂n analiza ultrametrică, acelaşi rol pe care ı̂l joacă corpul numerelor
reale ı̂n analiza reală.

Fie p un număr prim; urmând exemplul 1.1.11, punctul (ii), ∀x ∈ Q∗,
există un unic n ∈ Z a.̂ı. x = pn · a

b
, unde a, b ∈ Z∗ sunt două numere prime

cu p. Am definit

|x|p =
1

pn
= p−n şi |0|p = 0.

Aplicaţia | · |p : Q→ R+ este o normă ne-arhimediană pe Q. Conform teore-

mei 1.2.1 corpul normat (Q, | · |p) admite un completat (Q̂, | · |p̂) ≡ (Qp, | · |p)
unic până la un izomorfism izometric, completat care este de asemenea corp
ne-arhimedian (vezi observaţia 1.2.3, (i)). În cele ce urmează ne propunem
să construim efectiv acest completat plecând de la Q.

Numerele ı̂ntregi p-adice

Reamintim relaţia de congruenţă modulo q pe Z; astfel dacă q ∈ N, q > 1
definim pe Z urmatoarea relaţie binară, numită congruenţă modulo q: dacă
a, b ∈ Z, spunem că a este congruent cu b modulo q şi scriem a ≡ b( mod q)
dacă q|(a− b) (a− b este divizibil prin q).

Fie atunci

Z = {(xn)n ⊆ Z : xn ≡ xn−1( mod pn),∀n ∈ N∗}.

Să dăm exemple de şiruri care se găsesc ı̂n Z:
1). Fie (xn)n ⊆ Z, xn = pn+1,∀n ∈ N; evident xn − xn−1 este divizibil cu

pn, ∀n ∈ N∗. Deci (xn)n ∈ Z.
2). Fie (xn)n ⊆ Z, xn = 1+p+· · ·+pn, ∀n ∈ N; este evident că (xn)n ∈ Z.
3). Orice şir constant x̄, unde x ∈ Z, este un element din Z.
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Pe mulţimea Z vom defini o relaţie prin:

(xn)n ∼ (yn)n ⇐⇒ xn ≡ yn( mod pn+1),∀n ∈ N.

Se poate uşor observa că ∼ este o relaţie de echivalenţă pe Z.

1.2.4 Definiţie. Mulţimea cât Z/∼ se numeşte mulţimea ı̂ntregilor p-
adici şi se notează cu Zp.

Fie x̂ = [(xn)] ∈ Zp; x̂ este clasa de reprezentant şirul (xn)n ⊆ Z adică
mulţimea tuturor şirurilor din Z echivalente cu (xn)n. ∀n ∈ N, notăm cu x̄n
cel mai mic ı̂ntreg pozitiv cu proprietatea că

xn ≡ x̄n( mod pn+1);

este evident că
0 ≤ x̄n < pn+1,∀n ∈ N

şi că
∀n ∈ N∗, x̄n ≡ xn ≡ xn−1 ≡ x̄n−1( mod pn).

Atunci (x̄n)n ∈ Z şi
(xn)n ∼ (x̄n)n

deci x̂ = [(x̄n)]. Şirul (x̄n)n se numeşte reprezentarea canonică a intregului
p-adic x̂.

1.2.5 Propoziţie. Doi ı̂ntregi p-adici coincid dacă şi numai dacă au aceeaşi
reprezentare canonică.

Demonstraţie. Fie (x̄n)n reprezentarea canonică a ı̂ntregului p-adic x̂ şi
(ȳn)n reprezentarea canonică a lui ŷ. Dacă x̂ = ŷ atunci (x̄n) ∼ (ȳn) şi deci
x̄n ≡ ȳn( mod pn+1),∀n ∈ N. Dar, cum 0 ≤ x̄n < pn+1 şi 0 ≤ ȳn < pn+1,
∀n ∈ N, rezultă că x̄n = ȳn,∀n ∈ N.

�

Rezultă că un ı̂ntreg p-adic este unic determinat de reprezentarea sa
canonică.

1.2.6 Propoziţie. Fie (x̄n)n reprezentarea canonică a ı̂ntregului p-adic x̂;
atunci există un şir (ān)n ⊆ N aşa fel ı̂ncât, ∀n ∈ N:

x̄n = ā0 + ā1p+ · · ·+ ānp
n şi 0 ≤ ān < p.
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Demonstraţie. Deoarece,∀n ∈ N∗, x̄n ≡ x̄n−1( mod pn),∃ān ∈ Z a.̂ı.
x̄n − x̄n−1 = ānp

n. Dar 0 ≤ x̄n < pn+1 şi 0 ≤ x̄n−1 < pn de unde
−pn < ānp

n < pn+1 sau −1 < ān < p. Rezultă că 0 ≤ ān < p,∀n ∈ N∗. Să
notăm acum ā0 = x0 şi, observând că 0 ≤ ā0 < p, rezultă că am determinat
şirul (ān)n ⊆ [0, p)∩N a.̂ı. x̄n = x̄n−1 + ānp

n, ∀n ∈ N∗. Din relaţia precedentă
rezultă că x̄n = ā0 + ā1p+ · · ·+ ānp

n,∀n ∈ N.
�

1.2.7 Observaţie. Remarcăm că Zp este ı̂n corespondenţă bijectivă cu
mulţimea şirurilor (x̄n)n de forma x̄n = ā0 + ā1p + · · · + ānp

n,∀n ∈ N, unde
ān ∈ {0, 1, · · · , p− 1},∀n ∈ N. Rezultă de aici că Zp are puterea continuului
(cardinalul lui Zp este acelaşi cu cardinalul lui R, adică c).

1.2.8 Exemple. 1). Fie (xn)n ∈ Z, xn = pn+1,∀n ∈ N şi fie x̂ = [(xn)] ∈
Zp. Reprezentarea sa canonică este 0̄ (şirul constant zero). Rezultă că x̂ =
[0̄].

2). Fie x̂ = [(xn)] ∈ Zp, unde xn = 1 + p + · · · + pn,∀n ∈ N; după
propoziţia precedentă este evident că (xn)n este reprezentarea sa canonică.

3). Fie x̂ = [x̄] ∈ Zp unde x ∈ Z; dacă scriem pe x ı̂n baza p obţinem
x = a0 + a1p+ · · ·+ aqp

q, unde ak ∈ {0, 1, · · · , p− 1}. Construim şirul (x̄n)n
punând x̄k = a0+a1p+· · ·+akpk dacă k < q şi x̄k = a0+a1p+· · ·+aqpq,∀k ≥
q; atunci (x̄n)n este reprezentarea canonică a lui x̂.

Aplicaţia i : Z → Zp definită prin i(x) = [x̄] este injecţia canonică a
mulţimii numerelor ı̂ntregi ı̂n mulţimea ı̂ntregilor p-adici.

Pe Zp definim două operaţii astfel: ∀x̂ = [(xn)], ŷ = [(yn)] ∈ Zp:

x̂+ ŷ = [(xn + yn)], x̂ · ŷ = [(xn · yn)].

Se poate uşor constata că operaţiile sunt consistent definite şi că Zp este
un inel comutativ cu unitate ı̂n raport cu aceste două operaţii. Elementul
neutru la adunare este 0̂ = [0̄] iar la ı̂nmulţire 1̂ = [1̄].

Aplicaţia i definită mai sus devine homomorfism de inele ı̂n raport cu
aceste două operaţii.

Fie U ⊆ Zp mulţimea elementelor inversabile faţă de operaţia de ı̂nmul-
ţire, adică:

U = {x̂ ∈ Zp : ∃ŷ ∈ Zp a.̂ı. x̂ · ŷ = 1̂}.

Evident că ŷ este inversul lui x̂ ı̂n inelul Zp.
Teorema următoare dă o caracterizare a acestor elemente.
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1.2.9 Teoremă. x̂ = [(xn)] ∈ U ⇐⇒ x0 6≡ 0( mod p).

mi Demonstraţie. =⇒: Fie x̂ = [(xn)] ∈ U ; atunci există ŷ = [(yn)] ∈ U
a.̂ı. x̂ · ŷ = 1̂. Rezultă că ∀n ∈ N,

xn · yn ≡ 1( mod pn+1).

În particular x0 · y0 ≡ 1( mod p) de unde rezultă că x0 6≡ 0(modp).
⇐=: Presupunem că x0 6≡ 0( mod p); deoarece

x1 ≡ x0( mod p), x2 ≡ x1 ≡ x0( mod p), · · · , xn ≡ · · · ≡ x0( mod p),
rezultă că

(1) xn 6≡ 0( mod p),∀n ∈ N.

În particular ∀n ∈ N, xn şi pn+1 sunt prime ı̂ntre ele şi deci există două
numere ı̂ntregi yn şi zn a.̂ı.

(2) yn · xn + zn · pn+1 = 1.

Cum xn ≡ xn−1( mod pn), rezultă din relaţia precedentă că
xn · yn − xn−1 · yn−1 = (xn · yn − 1) + (1 − xn−1 · yn−1) este divizibil prin
pn,∀n ∈ N. Deci

(3) xn · yn ≡ xn−1 · yn−1( mod pn).

Acum din (3), xn ·yn−xn−1 ·yn−1 = xn ·yn−xn ·yn−1 +xn ·yn−1−xn−1 ·yn−1 =
xn(yn−yn−1)+yn−1(xn−xn−1) este divizibil cu pn; din (1), xn nu este divizibil
cu p şi, deoarece (xn)n ∈ Z, xn−xn−1 este divizibil cu pn. Rezultă atunci că
yn − yn−1 este divizibil cu pn adică

yn ≡ yn−1( mod pn),∀n ∈ N

ceea ce antrenează (yn)n ∈ Z. Fie ŷ = [(yn)] ∈ Zp; relaţia (2) spune că

xn · yn ≡ 1( mod pn+1), ∀n ∈ N ceea ce ı̂nseamnă că x̂ · ŷ = 1̂. Deci x̂ ∈ U .
�

1.2.10 Observaţii. (i) Dacă (x̄n)n este reprezentarea canonică a lui x̂,
atunci x̄0 6≡ 0( mod p) ı̂nseamnă x̄0 6= 0.

(ii) Dacă x ∈ Z atunci i(x) = [x̄] ∈ U dacă şi numai dacă p 6 |x (p nu divide
x). Într-adevăr, după exemplul 3) din 1.2.8 şi din observaţia precedentă,
i(x) ∈ U ⇔ a0 6= 0 de unde x = x̄q nu este divizibil cu p.
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(iii) Fie Q′ =
{m
n

: m ∈ Z, n ∈ Z∗ cu p 6 |n
}

; din observaţia precedentă

x̂ = i(n) ∈ U şi deci există ŷ ∈ Zp a.̂ı. x̂ · ŷ = 1̂.

Vom extinde acum aplicaţia de scufundare i la Q′ prin
m

n
7→ i(m) · ŷ.

Aplicaţia extinsă se va nota tot cu i. Astfel interpretăm pe ŷ ca fiind i

(
1

n

)
.

Aplicaţia extinsă este injectivă şi păstrează de asemenea operaţiile de
adunare şi de ı̂nmulţire. Vom conveni atunci să identificăm Q′ cu i(Q′) şi
deci să considerăm deci Q′ ca fiind submulţime a inelului ı̂ntregilor p-adici
Zp.

Teorema următoare permite să reprezentăm elementele inelului Zp cu
ajutorul elementelor inversabile.

1.2.11 Teoremă (teorema de reprezentare a ı̂ntregilor p-adici). Oricare ar
fi x̂ ∈ Zp \ {0̂}, există un număr natural m şi un element x̂0 ∈ U unice aşa
fel ı̂ncât:

x̂ = pm · x̂0.

mi Demonstraţie. Dacă x̂ ∈ U atunci putem lua m = 0 si x̂0 = x̂.
Presupunem acum că x̂ = [(xn)] /∈ U ; atunci x0 ≡ 0( mod p). Deoarece

x̂ 6= 0̂,∃m ∈ N a.̂ı. xm 6≡ 0( mod pm+1); să considerăm că m este cel mai mic
număr cu această proprietate. Evident că m > 0 şi că xm−1 ≡ 0( mod pm).

xm ≡ xm−1( mod pm) =⇒ xm ≡ 0( mod pm),

xm+1 ≡ xm( mod pm+1) =⇒ xm+1 ≡ 0( mod pm),

· · ·

xm+s ≡ xm+s−1( mod pm+s) =⇒ xm+s ≡ 0( mod pm).

Şirul (xn)n este deci de forma

(a0p, a1p
2, · · · , am−1p

m, amp
m, am+1p

m, · · · ),

unde am 6 |p.
Fie ys =

1

pm
· xm+s, ∀s ∈ N; şirul (ys)s este de forma

(am, am+1p, am+2p
2, · · · ).
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∀s ∈ N∗, ys − ys−1 =
1

pm
(xm+s − xm+s−1) =

1

pm
· a · pm+s este divizibil cu ps

şi astfel (ys)s ∈ Z. Rezultă că x̂0 = [(ys)] ∈ Zp. În plus y0 =
1

pm
· xm nu este

divizibil cu p (xm 6≡ 0( mod pm+1)) şi astfel x̂0 ∈ U .
pm · x̂0 = [(xm, xm+1, · · · , xm+s, · · · )] şi deci, ∀s ∈ N,

xm+s − xs = (xm+s − xm+s−1)︸ ︷︷ ︸
divizibil prin pm+s

+ (xm+s−1 − xm+s−2)︸ ︷︷ ︸
divizibil prin pm+s−1

+ · · ·+ (xs+1 − xs)︸ ︷︷ ︸
divizibil prin ps+1

,

de unde rezultă că xm+s ≡ xs( mod ps+1),∀s ∈ N şi deci pm · x̂0 = x̂.
Unicitatea: Să presupunem că x̂ = pm · x̂0 = pk · ŷ0 unde x̂0 = [(ys)], ŷ0 =

[(zs)] ∈ U şi deci ∀s ∈ N, ys 6≡ 0( mod p), zs 6≡ 0( mod p). Pe de altă parte,
deoarece pm · x̂0 = pk · ŷ0,

pmys ≡ pkzs( mod ps+1),∀s ∈ N.

Dacă ı̂n relaţia de mai sus luăm s = m− 1 obţinem că pm divide pmym−1 −
pkzm−1, de unde rezultă k ≥ m. Procedăm simetric (facem s = k − 1) şi
obţinem k ≤ m. Deci k = m.

Acum, ∀s ∈ N, pmym+s ≡ pmzm+s( mod pm+s+1) de unde rezultă că
ym+s ≡ zm+s( mod ps+1).

Pe de altă parte, cum ym+s ≡ ys( mod ps+1) şi zm+s ≡ zs( mod ps+1),
rezultă că ys ≡ zs( mod ps+1),∀s ∈ N, deci x̂0 = ŷ0.

�

1.2.12 Corolar. Zp este domeniu de integritate.

Demonstraţie. Presupunem că există două elemente ne-nule ale lui
Zp, x̂, ŷ a.̂ı. x̂ · ŷ = 0̂. Atunci, din teorema de reprezentare de mai sus,

x̂ = pm · x̂0 şi ŷ = pk · ŷ0. Rezultă că pm+k · x̂0 · ŷ0 = 0̂. Deoarece x̂0, ŷ0 ∈ U ,
ele sunt elemente inversabile. Înmulţim ı̂n relaţia precedentă cu x̂−1

0 · ŷ−1
0 şi

obţinem pm+k · 1̂ = 0̂ de unde rezultă că şirul constant egal cu pm+k trebuie
să fie echivalent cu şirul constant 0. Din definiţia relaţiei de echivalenţă asta
ı̂nseamnă că pm+k ≡ 0( mod pn+1),∀n ∈ N sau, ı̂n particular, trebuie ca
pm+k să fie divizibil cu pm+k+1 ceea ce este absurd.

�

Deoarece, conform corolarului precedent, Zp este domeniu de integritate
putem construi corpul să de fracţii Qp; vom nota elementele lui Qp cu litere
greceşti α, β, · · · , iar cu 0 şi 1 vom nota elementele neutre la adunare şi
respectiv la ı̂nmulţire din Qp. Cum Zp conţine ca sub-inel pe Z, Qp va
conţine pe Q ca sub-corp.
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În cele ce urmează vom identifica ı̂n mod natural Zp cu o submulţime a
corpului său de fracţii Qp şi deci vom putea scrie: Z ⊆ Q′ ⊆ Zp ⊆ Qp şi de
asemenea Q ⊆ Qp.

Următorul rezultat este o teoremă de reprezentare a elementelor corpului
Qp.

1.2.13 Teoremă (teorema de reprezentare a numerelor p-adice). Oricare
ar fi α ∈ Qp \ {0}, există un număr ı̂ntreg m şi un element x̂ ∈ U unice aşa
fel ı̂ncât:

α = pm · x̂.

mi Demonstraţie. Să amintim că, pentru construcţia corpului de fracţii
al domeniului de integritate Zp, se defineşte o relaţie de echivalenţă pe Zp×Z∗p
prin

(x̂, ŷ) ∼ (û, v̂)⇐⇒ x̂ · v̂ = ŷ · û.

Qp este atunci spaţiul cât Zp × Z∗p/∼.

Fie acum α = [(x̂, ŷ)] ∈ Qp, α 6= 0; atunci x̂, ŷ ∈ Z∗p şi deci, din teorema
de reprezentare a ı̂ntregilor p-adici (teorema 1.2.11), există m, k ∈ N, există
x̂0, ŷ0 ∈ U a.̂ı. x̂ = pm · x̂0, ŷ = pk · ŷ0.

Atunci (x̂, ŷ) = (pm · x̂0, p
k · ŷ0) ∼

{
(pm−kx̂0ŷ

−1
0 , 1̂), dacă m ≥ k

(x̂0ŷ
−1
0 , pk−m), dacă m < k

, de

unde rezultă că α = pm−k · x̂0 · ŷ−1
0 . Demonstraţia se ı̂ncheie dacă observăm

că x̂0 · ŷ−1
0 ∈ U .

Unicitatea rezultă din unicitatea reprezentării intregilor p-adici şi din
construcţia corpului de fracţii.

�

Teorema de reprezentare de mai sus permite definirea unei norme de corp
pe Qp.

1.2.14 Definiţie. Fie α ∈ Qp; dacă α 6= 0 există ı̂n mod unic m ∈ Z, x̂ ∈ U
a.̂ı. α = pm · x̂. Definim atunci

|α|p =

{
p−m, dacă α 6= 0,

0, dacă α = 0.

1.2.15 Teoremă. Aplicaţia | · |p : Qp → R+, definită prin α 7→ |α|p este o
normă de corp ne-arhimedian pe Qp.
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Demonstraţie. Este evident din definiţie că |α|p = 0⇔ α = 0.
Fie acum α = pm · x̂, β = pk · ŷ ∈ Q∗p unde m, k ∈ Z, x̂, ŷ ∈ U .

α · β = pm+k · x̂ · ŷ şi, cum x̂ · ŷ ∈ U , |α · β|p = p−(m+k) = |α|p · |β|p.
α + β = pm · x̂+ pk · ŷ
1. Să presupunem ı̂ntâi că m > k; atunci α + β = pk · (pm−k · x̂ + ŷ).

Să presupunem că x̂ = [(xn)], ŷ = [(yn)] unde (xn)n, (yn)n ∈ Z. Din teorema
1.2.9 rezultă că y0 6≡ 0( mod p) şi atunci pm−kx0+y0 6≡ 0( mod p). Rezultă,
ı̂n baza aceleiaşi teoreme 1.2.9, că ẑ = pm−k · x̂+ ŷ ∈ U şi α+ β = pk · ẑ; din
definiţia normei, |α + β|p = p−k = max{p−m, p−k} = max{|α|p, |β|p}.

2. Dacă m < k se procedează analog şi se obţine |α + β|p = p−m =
max{|α|p, |β|p}.

3. Dacă m = k atunci α+β = pm ·(x̂+ ŷ). Din teorema de reprezentare a
ı̂ntregilor p-adici, x̂+ ŷ = pl · ẑ, unde l ∈ N şi ẑ ∈ U . Atunci α+ β = pm+l · ẑ
şi astfel |α + β|p = p−(m+l) ≤ p−m = max{|α|p, |β|p}. �

1.2.16 Observaţie. ∀x ∈ Q∗ există un unic n ∈ Z a.̂ı. x = pn · a
b

, unde

a, b ∈ Z∗ sunt două numere prime cu p. Atunci
a

b
∈ Q′ ⊆ Zp; mai mult cum

p 6 |a,
a

b
∈ U . Atunci |x|p = p−n. Se vede deci că urma pe Q a normei ne-

arhimediene de corp de pe Qp este chiar norma p-adică definită ı̂n exemplul
1.1.11, (ii). Teorema următoare arată că Q este o submulţime densă ı̂n Qp.

1.2.17 Teoremă.

1. Fie α = [(xn)] ∈ Zp ⊆ Qp; atunci (xn)n ⊆ Z ⊆ Qp şi xn
|·|p−→ α.

2. ∀α ∈ Qp,∃(xn)n ⊆ Q aşa fel ı̂ncât xn
|·|p−→ α.

mi Demonstraţie. 1. Presupunem că α = [(xn)] ∈ Zp ⊆ Qp; şirul
(xn)n ⊆ Z poate fi gândit ca un şir din Qp prin identificarea fiecărui termen
xn cu clasa de echivalenţă generată de şirul constant x̄n: xn ≡ i(xn) = [x̄n].

Să observăm că, ∀n ∈ N, (xm)m ∼ (xn+m)m; ı̂ntr-adevăr, ∀m ∈ N, xn+m ≡
xm( mod pm+1). Rezultă atunci că putem schimba reprezentantul lui α =
[(xn+m)m]; astfel ∀n ∈ N,

α− [x̄n] = [(xn+m − xn)m].

Dar, ∀n ∈ N, xn+m − xn se divide cu pn+1 şi astfel

α− [x̄n] = pn+1 · [(x′n+m − x′n)m],
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de unde |α− [x̄n]|p ≤ p−(n+1),∀n ∈ N şi deci xn ≡ [x̄n]
|·|p−→ α.

2. Dacă α ∈ Q∗p atunci, după teorema de reprezentare a numerelor p-
adice, α = pm · x̂ cu m ∈ Z şi x̂ ∈ U ⊆ Zp.

Dacă m ∈ N atunci α ∈ Zp şi deci, după punctul precedent, α este limită
a unui şir de numere ı̂ntregi.

Dacă m ∈ Z \N şi x̂ = [(xn)] atunci, folosind din nou punctul precedent,

xn
|·|p−→ x̂. Atunci pm ·xn

|·|p−−−→
n→∞

pm · x̂ = α. Demonstraţia se ı̂ncheie dacă mai

observăm că (pm · xn)n ⊆ Q.
�

Rezultatul următor este de acelaşi tip cu lema lui Cesàro din analiza
clasică pe R.

1.2.18 Teoremă. Orice şir mărginit ı̂n normă din (Qp, | · |p) conţine un
subşir convergent.

mi Demonstraţie. Dacă şirul (αn) ⊆ Qp are un subşir constant egal cu
0 atunci acest subşir converge la 0.

Putem deci presupune că αn ∈ Q∗p,∀n ∈ N, si atunci, după teorema de
structură a numerelor p-adice, există un şir de ı̂ntregi (kn)n ⊆ Z şi un şir
(x̂n)n ⊆ U ⊆ Zp a.̂ı.

αn = pkn · x̂n,∀n ∈ N.

1). Presupunem ı̂ntâi că (αn)n ⊆ Zp; atunci (kn)n ⊆ N şi, deoarece
|αn|p = p−kn ≤ 1, rezultă că orice şir din Zp este mărginit.

Dacă (kn)n are un subşir nemărginit atunci (αn)n are un subşir care con-
verge la 0 şi demonstraţia se ı̂ncheie.

Presupunem că şirul (kn)n este un şir de numere naturale mărginit; atunci
acesta are un subşir, notat tot (kn)n, constant egal cu un k ∈ N. Rezultă că
(αn)n are un subşir, notat tot cu (αn)n, de forma αn = pk · x̂n,∀n ∈ N.

Fie, ∀n ∈ N, x̂n = [(xnm)m], unde (xnm)m este reprezentarea canonică a
ı̂ntregului p-adic x̂n. Atunci

0 ≤ xnm < pm+1,∀m,n ∈ N.

Şirul de numere ı̂ntregi (xn0 )n∈N ia valori ı̂n mulţimea finită {0, 1, · · · , p− 1};
rezultă că există un element x0 ∈ {0, 1, · · · , p − 1} şi o submulţime infinită
N0 ⊆ N a.̂ı.xn0 = x0, ∀n ∈ N0.
Şirul de numere ı̂ntregi (xn1 )n∈N0 ia valori ı̂n mulţimea finită {0, 1, · · · , p2−1};
rezultă că există un element x1 ∈ {0, 1, · · · , p2 − 1} şi o submulţime infinită
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N1 ⊆ N0 a.̂ı. xn1 = x1, ∀n ∈ N1.
Inductiv, vom găsi la pasul q ∈ N un element xq ∈ {0, 1, · · · , pq+1 − 1} şi o
submulţime infinită Nq ⊆ Nq−1 a.̂ı. xnq = xq,∀n ∈ Nq.
Alegem acum n0 ∈ N0, n1 ∈ N1 cu n1 > n0, · · · , nq ∈ Nq cu nq > nq−1, · · · .
Fie şirul (xq)q ⊆ Z; ∀q ∈ N, nq ∈ Nq ⊆ Nq−1 şi deci x

nq
q = xq şi x

nq
q−1 = xq−1;

rezultă că xq − xq−1 = x
nq
q − x

nq
q−1 ≡ 0( mod pq). Deci (xq)q ∈ Z; fie

x̂ = [(xq)] ∈ Zp.
Să observăm că ∀q ∈ N, nq ∈ Nq ⊆ Nq−1 ⊆ · · · ⊆ N1 ⊆ N0 şi deci
x
nq
i = xi,∀i = 0, 1, · · · , q. Rezultă că (x

nq
m−xm)m = (0, · · · , 0, xnqq+1−xq+1, · · · )

şi deci x
nq
q+s − xq+s ≡ 0( mod pq+1),∀s ≥ 1. Atunci x̂nq − x̂ = pq+1 · ŷq unde

ŷq ∈ Zp şi deci |x̂nq − x̂|p ≤ p−(q+1),∀q ∈ N de unde x̂nq
|·|p−→ x̂. Atunci

αnq
|·|p−→ pk · x̂.

2). Presupunem acum că (αn)n ⊆ Qp \ Zp; atunci (kn)n ⊆ Z \ N. Şirul
(αn)n fiind mărginit, există M > 0 a.̂ı. |αn|p = p−kn ≤ M . Rezultă că şirul
(kn)n este mărginit şi deci admite un subşir, notat tot cu (kn)n, constant egal
cu un k ∈ Z \ N.

Atunci αn = pk · x̂n, ∀n ∈ N. Dar (x̂n)n ⊆ Zp este mărginit (orice şir
din Zp este mărginit) şi, conform primei părţi a demonstraţiei, acesta are un

subşir, notat tot cu (x̂n)n, convergent la un x̂ ∈ Zp; atunci αn
|·|p−→ pk · x̂.

�

Teorema precedentă ne permite să demonstrăm completitudinea corpului
normat (Qp, | · |p).

1.2.19 Teoremă. Corpul normat (Qp, | · |p) este complet.

Demonstraţie. Demonstraţia este similară demonstraţiei teoremei de com-
pletitudine a lui R.

Orice şir Cauchy ı̂n (Qp, |·|p) este mărginit. Conform teoremei precedente
el are un subşir convergent ı̂n (Qp, | · |p). Dar, dacă un şir Cauchy are un
subşir convergent, el ı̂nsuşi converge.

�

1.2.20 Observaţie. Deoarece (Qp, |·|p) este corp complet şi conţine pe Q ca
subcorp normat şi dens rezultă că (Qp, | · |p) este un completat al lui (Q, | · |p).
Deoarece completatul unui corp normat este unic, până la un izomorfism
izometric de corpuri rezultă că (Qp, | · |p) este completatul lui (Q, | · |p).

Bibliografie
[IM] Isac, Gh., Marinescu, Gh. - Analiză pe corpuri ultrametrice , Ed. Acad.
RSR, Bucureşti, 1976.



Capitolul 2

Recurenţe liniare şi neliniare

În acest capitol se tratează teoria generală a recurenţelor liniare şi unele
recurenţe neliniare.

Recurenţele liniare admit o tratare exhaustivă asemănătoare teoriei e-
cuaţiilor diferenţiale liniare. Astfel este studiat spaţiul liniar al soluţiilor
recurenţelor liniare omogene şi forma generală a soluţiilor recurenţelor liniare
ne-omogene. Pentru găsirea unei soluţii particulare a recurenţelor ne-omo-
gene se prezintă metoda variaţiei constantelor a lui Lagrange.

Recurenţele neliniare formează o clasă extrem de ı̂ntinsă. Ne vom limita ı̂n
a doua parte a capitolului la o clasă particulară: aceea a mediilor aritmetico-
geometrice. Un motiv pentru această alegere ı̂l oferă aplicaţiile pe care acest
algoritm le găseşte ı̂n calculul aproximativ al lungimii unor curbe clasice:
lemniscatele şi elipsele.

Calculul unor mărimi cu implicaţii astronomie dar şi ı̂n domenii ca teoria
funcţiilor a stat ı̂n atenţia matematicienilor ı̂ncă din cele mai vechi timpuri.
Viteza de convergenţă a algoritmului mediei aritmetico-geometrice a fost pro-
bată pentru a obţine aproximări din ce ı̂n ce mai bune pentru lungimea or-
bitelor eliptice sau pentru evaluări ale arcelor de lemniscată. De descoperirea
unor astfel de algoritmi şi-au legat numele matematicieni de primă mărime
cum ar fi Arhimede ı̂n antichitate dar şi matematicieni din epoca modernă
ca Lagrange, Gauss, Legendre, Landen ş.a.

2.1 Ecuaţii liniare cu diferenţe

2.1.1 Definiţie. Fie f : N→ R, f(n) = xn,∀n ∈ N, un şir de numere reale.

29
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Definim diferenţa finită de ordin unu a lui f : ∆(f(n)) = f(n + 1)− f(n) =
xn+1−xn,∀n ∈ N. Definim acum iterat diferenţele finite de ordine superioare
ale lui f prin

(D)



∆0f(n) = f(n) = xn,
∆1f(n) = ∆(f(n)) = f(n+ 1)− f(n) = xn+1 − xn,
∆2f(n) = ∆(∆1f(n)) = f(n+ 2)− 2f(n+ 1) + f(n) =

= xn+2 − 2xn+1 + xn,
· · ·

∆pf(n) = ∆(∆p−1f(n)) =
∑p

k=0(−1)kCk
p · f(n+ p− k) =

=
∑p

k=0(−1)kCk
p · xn+p−k.

Invers, putem determina inductiv translatele lui f cu ajutorul diferenţelor
finite:

(T )


f(n+ 1) = xn+1 = ∆1f(n) + ∆0f(n),
f(n+ 2) = xn+2 = ∆2f(n) + 2∆1f(n) + ∆0f(n),

· · ·
f(n+ p) = xn+p =

∑p
k=0C

k
p ·∆kf(n).

2.1.2 Definiţie. O ecuaţie cu diferenţe este o ecuaţie de forma:

(1) F (n,∆0f(n),∆1f(n), ...,∆pf(n)) = 0, n ∈ N,

unde F : N⊗ Rp+1 → R.
Din cele observate mai sus ecuaţiei (1) i se poate asocia o relaţie de

recurenţă:

(2) G(n, f(n), f(n+ 1), ..., f(n+ p)) = 0.

Un şir f : N → R care verifică ecuaţia (1) (sau ecuaţia asociată (2)) se
numeşte soluţie a ecuaţiei cu diferenţe (sau respectiv soluţie a relaţiei de
recurenţă). Dacă funcţia F (sau echivalent G) este liniară ı̂n variabilele
∆0f(n), ...,∆pf(n) (respectiv f(n), ..., f(n + p)) atunci ecuaţia cu diferenţe
se numeşte ecuaţie liniară (respectiv recurenţă liniară).

Forma generală a unei ecuaţii cu diferenţe liniară este:

b0(n) ·∆pf(n) + b1(n) ·∆p−1f(n) + ...+ bp(n) ·∆0f(n) = a(n), n ∈ N,
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unde b0, ..., bp şi a sunt şiruri de numere reale iar recurenţa liniară asociată
va fi de forma:

a0(n) · f(n+ p) + a1(n) · f(n+ p− 1) + ...+ ap(n) · f(n) = a(n).

Evident aici a0(n) = b0(n),∀n ∈ N.
Vom presupune ı̂n cele ce urmează că a0(n) = b0(n) 6= 0,∀n ∈ N şi,

prin ı̂mpărţire cu a0(n) şi renotare a coeficienţilor ai respectiv bi, vom obţine
forma generală a ecuaţiilor cu diferenţe liniare:

(D) ∆pf(n) + b1(n) ·∆p−1f(n) + ...+ bp(n) ·∆0f(n) = a(n),∀n ∈ N,

şi recurenţa asociată:

(R) f(n+ p) + a1(n) · f(n+ p− 1) + ...+ ap(n) · f(n) = a(n),∀n ∈ N.

Problema pe care vrem să o rezolvăm ı̂n acest paragraf este de a găsi
toate şirurile f : N→ R care verifică ecuaţia (D) sau echivalent ecuaţia (R).

Ecuaţii liniare omogene

În cazul particular ı̂n care a(n) = 0,∀n ∈ N, ecuaţiile (D) şi respectiv (R)
de mai sus se rescriu:

(DO) ∆pf(n) + b1(n) ·∆p−1f(n) + ...+ bp(n) ·∆0f(n) = 0,∀n ∈ N,

(RO) f(n+ p) + a1(n) · f(n+ p− 1) + ...+ ap(n) · f(n) = 0, ∀n ∈ N.

şi se numesc ecuaţia liniară omogenă cu diferenţe şi respectiv recurenţa liniară
omogenă asociată; p se va numi ordinul acestor recurenţe.

2.1.3 Observaţie. Dacă presupunem că există n0 ∈ N a.̂ı. ap(n0) = 0
atunci ordinul p al recurenţei omogene se poate reduce.

Într-adevăr, ı̂n acest caz, dacă presupunem că ap−1(n) 6= 0,∀n ∈ N, atunci
făcând n = n0 ı̂n (RO) obţinem

f(n0 + 1) = F1(f(n0 + 2), ..., f(n0 + p)),

unde F1 este aplicaţie liniară de cele p− 1 variabile ale sale.
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În (RO) facem acum n = n0 + 1, ı̂nlocuim pe f(n0 + 1) cu valoarea de
mai sus şi obţinem:

f(n0 + 2) = F2(f(n0 + 3), ..., f(n0 + p+ 1)),

unde F2 este liniară de toate cele p− 1 variabile ale sale, ş.a.m.d.
După n paşi obţinem

f(n0 + n) = Fn(f(n0 + 1 + n), ..., f(n0 + p− 1 + n)).

Dacă ı̂n ultima relaţie facem translaţia f(n0 + n) = g(n) obţinem

g(n) = Fn(g(n+ 1), ..., g(n+ p− 1))

care este o recurenţă liniară omogenă de ordin p− 1.
În cele ce urmează vom considera numai recurenţe liniare omogene de

ordin p cu ap(n) 6= 0, ∀n ∈ N.

2.1.4 Teoremă. Fie p ∈ N∗, a1, ..., ap şiruri de numere reale date a.̂ı.
ap(n) 6= 0,∀n ∈ N şi

(RO) f(n+ p) + a1(n) · f(n+ p− 1) + ...+ ap(n) · f(n) = 0,∀n ∈ N.

recurenţa liniară omogenă de ordin p; atunci mulţimea

V = {f : N→ R|f verifică (RO)}

este un spaţiu liniar real de dimensiune p.

Demonstraţie. Este evident că V este spaţiu liniar real faţă de operaţiile
uzuale de adunare şi ı̂nmulţire cu scalari ı̂ntre şiruri; fie dimV dimensiunea
sa.

Remarcăm că un şir f ∈ V este perfect determinat dacă cunoaştem
primele sale p valori. Într-adevăr, cunoscând f(0), f(1), ..., f(p − 1), deter-
minăm f(p) dând lui n valoarea 0 ı̂n (RO); apoi făcând n = 1, determinăm
f(p+ 1), ş.a.m.d.

Fie atunci f 0, f 1, ..., f p−1 ∈ V a.̂ı.

fk(k) = 1 şi fk(i) = 0,∀i ∈ {0, ..., p− 1} \ {k}.
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Fie λ0 · f 0 + ...+λp−1 · fp−1 = 0 o combinaţie liniară nulă a acestor şiruri;
rezultă ı̂n particular că

(1) λ0 · f 0(n) + ...+ λp−1 · fp−1(n) = 0, ∀n = 0, ..., p− 1.

Dar, ∀n ∈ {0, ..., p − 1}, fk(n) = 0,∀k 6= n şi fn(n) = 1, de unde λn =
0,∀n = 0, ..., p− 1 şi deci f 0, ..., f p−1 sunt liniar independente.

Rezultă din cele de mai sus că:

(2) dimV ≥ p.

Fie acum g0, ..., gp−1, gp ∈ V, (p+ 1) soluţii şi λ0, ..., λp a.̂ı.

(3)

p∑
i=0

λi · gi = 0.

Atunci

(4)

p∑
i=0

λi · gi(n) = 0,∀n = 0, ..., p− 1.

(4) este un sistem liniar omogen de p ecuaţii cu p+ 1 necunoscute: λ0, ..., λp.
Acest sistem admite deci şi soluţii nebanale; deci există λ̄0, ..., λ̄p, nu toate
nule, a.̂ı.

(5)

p∑
i=0

λ̄i · gi(n) = 0,

∀n = 0, ..., p− 1. Vom demonstra prin inducţie că (5) este adevărată pentru
orice n ∈ N. (5) este verificată pentru n = 0, ..., p− 1.

Presupunem că m ≥ p− 1 şi că (5) are loc pentru n = 0, 1, ...,m; folosind
că gi, i = 0, ..., p− 1, verifică (RO), deci că, ∀i = 0, ..., p− 1, ∀n ∈ N,

gi(n+ p) = −
p∑
j=1

aj(n) · gi(n+ p− j),

obţinem:

p∑
i=0

λ̄i · gi(m+ 1) =

p∑
i=0

λ̄i · gi((m+ 1− p) + p) =
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= −
p∑
i=0

p∑
j=1

λ̄i · aj(m+ 1− p) · gi(m+ 1− j) =

= −
p∑
j=1

aj(m+ 1− p) ·
p∑
i=0

λ̄i · gi(m+ 1− j).

Dar, ∀j = 1, ..., p, m+ 1− j ≤ m şi deci, din ipoteza inductivă,∑p
i=0 λ̄i · gi(m+ 1− j) = 0. Rezultă că (5) este verificată pentru m+ 1.

Deoarece (5) este adevărată pentru orice n ∈ N rezultă că

p∑
i=0

λ̄i · gi = 0

ceea ce spune că orice p+ 1 vectori, g0, ..., gp, sunt liniar dependenţi.

Rezultă că

(6) dimV < p+ 1.

Din (2) şi (6) dimV = p.
�

2.1.5 Definiţie. Fie f 0, f 1, ..., f p−1 ∈ V ; determinantul

D[f 0, ..., f p−1](n) =

∣∣∣∣∣∣∣∣
f 0(n) f 1(n) · · · fp−1(n)
f 0(n+ 1) f 1(n+ 1) · · · fp−1(n+ 1)
· · · · · · · · · · · ·
f 0(n+ p− 1) f 1(n+ p− 1) · · · fp−1(n+ p− 1)

∣∣∣∣∣∣∣∣
n ∈ N, se numeşte determinant Casorati asociat funcţiilor f 0, ..., f p−1.

2.1.6 Lemă. ∀f 0, ..., f p−1 ∈ V, ∀n ∈ N∗,

D[f 0, ..., f p−1](n) = (−1)np ap(0)ap(1) · · · ap(n− 1) ·D[f 0, ..., f p−1](0).

Demonstraţie. Deoarece f 0, ..., f p−1 verifică relaţia (RO), ∀n ≥ 1,
∀k = 0, ..., p− 1,

fk(n+ p− 1) = −a1(n− 1) · fk(n+ p− 2)− · · · − ap(n− 1) · fk(n− 1).
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Înlocuind ultima linie a determinantului Casorati şi ţinând cont de pro-
prietăţile determinanţilor obţinem, ∀n ≥ 1:

D[f 0, ..., f p−1](n) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

f 0(n)
... fp−1(n)

f 0(n+ 1)
... fp−1(n+ 1)

· · · ... · · ·
f 0(n+ p− 2)

... fp−1(n+ p− 2)

−ap(n− 1) · f 0(n− 1)
... −ap(n− 1) · fp−1(n− 1)

∣∣∣∣∣∣∣∣∣∣∣∣∣
= −ap(n− 1) · (−1)p−1 ·D[f 0, ..., f p−1](n− 1).

De aici, aplicând inductiv egalitatea de mai sus:

D[f 0, ..., f p−1](n) = (−1)pkap(n− 1) · · · ap(n− k) ·D[f 0, ..., f p−1](n− k) =

= (−1)pnap(n− 1) · · · ap(0) ·D[f 0, ..., f p−1](0).

�

2.1.7 Corolar. D[f 0, ..., f p−1](0) = 0⇐⇒ ∃n ∈ N, D[f 0, ..., f p−1](n) = 0.

2.1.8 Propoziţie. Vectorii f 0, ..., f p−1 ∈ V sunt liniar independenţi dacă
şi numai dacă D[f 0, ..., f p−1](0) 6= 0 şi deci, echivalent, D[f 0, ..., f p−1](n) 6=
0,∀n ∈ N.

Demonstraţie. Presupunem că f 0, ..., f p−1 nu sunt liniar independenţi;
deci există λ0, ...λp−1 ∈ R, nu toate nule, aşa fel ı̂ncât

∑p−1
k=0 λk · fk = 0.

Putem să presupunem, fără a restrânge generalitatea că λ0 6= 0; atunci

λ0 ·D[f 0, ..., f p−1](0) =

∣∣∣∣∣∣∣∣
λ0 · f 0(0) f 1(0) · · · fp−1(0)
λ0 · f 0(1) f 1(1) · · · fp−1(1)
· · · · · · · · · · · ·
λ0 · f 0(p− 1) f 1(p− 1) · · · fp−1(p− 1)

∣∣∣∣∣∣∣∣ .
Dacă ı̂nmulţim coloana a doua a determinantului de mai sus cu λ1, ... ,
coloana p cu λp−1 şi adunăm totul la coloana ı̂ntâi obţinem pe prima coloană
numai zero de unde: λ0 ·D[f 0, ..., f p−1](0) = 0 şi deci D[f 0, ..., f p−1](0) = 0.

Reciproc, dacă f 0, ..., f p−1 sunt liniar independenţi, sistemul:

λ0 · f 0(k) + · · ·+ λp−1 · fp−1(k) = 0, k = 0, ..., p− 1

are numai soluţia banală, de unde rezultă că determinantul său este nenul.
Dar determinantul sistemului de mai sus este D[f 0, ..., f p−1](0).

�
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2.1.9 Observaţie. Dacă putem determina p vectori liniar independenţi
f 1, ..., f p ∈ V atunci soluţia generală a recurenţei omogene (RO) este:

f = c1 · f 1 + c2 · f 2 + · · ·+ cp · fp, ci ∈ R,∀i = 1, ..., p.

Într-un caz particular, acela al ecuaţiilor omogene cu coeficienţi constanţi,
putem determina p vectori liniar independenţi ı̂n V .

Ecuaţii omogene cu coeficienţi constanţi

Fie p ∈ N∗, a1, ..., ap ∈ R cu ap 6= 0; ecuaţia

(RO′) f(n+ p) + a1 · f(n+ p− 1) + ...+ ap · f(n) = 0,∀n ∈ N.

se numeşte recurenţă liniară omogenă cu coeficienţi constanţi; ea este aso-
ciată unei ecuaţii cu diferenţe omogene cu coeficienţi constanţi de tipul:

(DO′) ∆pf(n) + b1 ·∆p−1f(n) + ...+ bp ·∆0f(n) = 0,∀n ∈ N,

unde b1, ..., bp ∈ R.
Căutăm pentru ecuaţia (RO′) soluţii de forma f(n) = λn, n ∈ N; im-

punând ca f să verifice (RO′) obţinem:

(EC) λp + a1 · λp−1 + · · ·+ ap = 0.

Ecuaţia (EC) se numeşte ecuaţia caracteristică ataşată ecuaţiei liniare
omogene cu coeficienţi constanţi (RO′). Această ecuaţie admite p soluţii
reale sau complexe.

Vom studia pe rând cazurile ce pot apare.
I. Presupunem că ecuaţia (EC) admite rădăcini reale distincte λ1, · · · , λp.
În acest caz, ∀k = 1, · · · , p, fk(n) = λnk , n ∈ N, definesc p vectori liniar

independenţi ı̂n V . Într-adevăr, determinantul lui Casorati pentru această
mulţime de vectori este

D[f 1, · · · , fp](0) =

∣∣∣∣∣∣∣∣
1 1 · · · 1
λ1 λ2 · · · λp
· · · · · · · · · · · ·
λp−1

1 λp−1
2 · · · λp−1

p

∣∣∣∣∣∣∣∣ =
∏

1≤k<l≤p

(λl − λk) 6= 0.
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Conform propoziţiei 2.1.8 f 1, · · · , fp formează o mulţime de vectori liniar
independenţi şi deci soluţia generală a recurenţei omogene este:

f(n) =

p∑
k=1

ck · λnk , n ∈ N.

II. Să presupunem că rădăcinile λ1, · · · , λp sunt distincte dar că printre
ele apare şi o pereche complex conjugată: λ1,2 = R · e±iα = R(cosα ±
i sinα), unde i =

√
−1. În acest caz mulţimea f 1(n) = Rn cosnα, f 2(n) =

Rn sinna, f 3(n) = λn3 , · · · , fp(n) = λnp este liniar independentă. Într-adevăr
determinantul Casorati asociat acestei mulţimi este:

D[f 1, · · · , fp](0) =

∣∣∣∣∣∣∣∣∣∣∣

1 0 1
... 1

R cosα R sinα λ3
... λp

· · · · · · · · · ... · · ·
Rp−1 cos (p− 1)α Rp−1 sin (p− 1)a λp−1

3

... λp−1
p

∣∣∣∣∣∣∣∣∣∣∣
În determinantul de mai sus ı̂nmulţim coloana a doua cu i =

√
−1 şi adunăm

la coloana ı̂ntâi:

D[f 1, · · · , fp](0) =

∣∣∣∣∣∣∣∣
1 0 1 · · · 1
λ1 R sinα λ3 · · · λp
· · · · · · · · · · · · · · ·
λp−1

1 Rp−1 sin (p− 1)α λp−1
3 · · · λp−1

p

∣∣∣∣∣∣∣∣ .
Înmulţim acum coloana a doua cu −2i şi adunăm la aceasta coloana ı̂ntâi:

(−2i) ·D[f 1, · · · , fp](0) =

∣∣∣∣∣∣∣∣
1 1 · · · 1
λ1 λ2 · · · λp
· · · · · · · · · · · ·
λp−1

1 λp−1
2 · · · λp−1

p

∣∣∣∣∣∣∣∣ =
∏

1≤k<l≤p

(λl − λk) 6= 0.

Propoziţia 2.1.8 ne asigură astfel independenţa vectorilor; soluţia generală
va fi ı̂n acest caz:

f(n) = c1 ·Rn cosnα + c2 ·Rn sinnα +

p∑
k=3

ck · λnk , n ∈ N.
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Dacă ecuaţia (EC) are mai multe perechi de rădăcini complex conjugate
pentru fiecare pereche se procedează la fel.

III. Să considerăm acum cazul rădăcinilor multiple.
Dacă λ1 este rădăcină multiplă de ordin s pentru ecuaţia caracteristică,

trebuie să ı̂nlocuim ı̂n sistemul λn1 = λn2 = · · · = λns , λ
n
s+1, · · · , λnp primii

s vectori (egali ı̂ntre ei) cu alţii; să căutăm soluţii noi de forma f(n) =
g(n) · λn1 , n ∈ N. Înlocuind ı̂n ecuaţia caracteristică şi simplificând prin λn1
obţinem:

(1) g(n+ p) · λp1 + a1 · g(n+ p− 1) · λp−1
1 + · · ·+ ap · g(n) = 0, ∀n ∈ N.

Aplicăm acum şirului g relaţiile (T ) date ı̂n cadrul definiţiei 2.1.1 şi obţinem,
∀n ∈ N,∀k = 0, · · · , p,

g(n+ k) =
k∑
j=0

Cj
k∆

jg(n).

Revenim cu aceste valori ı̂n relaţiile (1)

p∑
j=0

Cj
p∆

jg(n) · λp1 + a1

p−1∑
j=0

Cj
p−1∆jg(n) · λp−1

1 + · · ·+ ap

0∑
j=0

Cj
0∆jg(n) = 0,

sau, după ce grupăm termenii:

(2) (C0
pλ

p
1 + a1C

0
p−1λ

p−1
1 + · · ·+ ap) ·∆0g(n)+

+(C1
pλ

p
1 + a1C

1
p−1λ

p−1
1 + · · ·+ ap−1λ1) ·∆1g(n) + · · ·+

+(Cp−1
p λp1 + a1C

p−1
p−1λ

p−1
1 ) ·∆p−1g(n) + Cp

pλ
p
1 ·∆pg(n) = 0.

Fie acum P (λ) = λp+a1λ
p−1 + · · ·+ap polinomul caracteristic; atunci relaţia

(2) se rescrie:

(3) P (λ1) ·∆0g(n) + λ1P
′(λ1) ·∆1g(n) + · · ·+

+
λp−1

1

(p− 1)!
P (p−1)(λ1) ·∆p−1g(n) +

λp1
p!
P (p)(λ1) ·∆pg(n) = 0.

Deoarece λ1 este rădăcină multiplă de ordin s, P (λ1) = P ′(λ1) = · · · =
P (s−1)(λ1) = 0 şi atunci relaţia (3) devine:

(4)
λs1
s!
P (s)(λ1) ·∆sg(n) +

λs+1
1

(s+ 1)!
P (s+1)(λ1) ·∆s+1g(n) + · · ·+
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+
λp1
p!
P (p)(λ1) ·∆pg(n) = 0.

Relaţia (4) poate fi verificată identic dacă g este un polinom de grad mai mic
decât s deoarece, ı̂n acest caz, diferenţele finite ale lui g de ordin mai mare
sau egal cu s sunt identic nule. În particular putem alege:

g1(n) = 1, g2(n) = n, · · · , gs(n) = ns−1.

În acest fel vom ı̂nlocui termenii egali λn1 , λ
n
2 , · · · , λns cu şirurile:

λn1 , nλ
n
1 , · · · , ns−1λn1 .

Rămâne să demonstrăm liniara independenţă. Vom face acest lucru ı̂n
cazul general al mai multor rădăcini multiple pentru ecuaţia caracteristică.
Să presupunem că ecuaţia caracteristică (EC) admite rădăcinile multiple:
λ1 cu ordinul de multiplicitate s1,
λ2 cu ordinul de multiplicitate s2,
· · ·
λq cu ordinul de multiplicitate sq.

Evident că s1 + · · · sq = p.

În locul fiecărei rădăcini multiple vom pune şiruri de tipul celor de mai
sus şi astfel obţinem sistemul de soluţii ale ecuaţiei caracteristice:

(S)


λn1 , nλ

n
1 , · · · , ns1−1λn1 ,

λn2 , nλ
n
2 , · · · , ns2−1λn2 ,

· · ·
λnq , nλ

n
q , · · · , nsq−1λnq .

2.1.10 Teoremă. Cele p soluţii ale sistemului (S) de mai sus formează un
sistem de vectori liniar independent ı̂n V .

mi Demonstraţie. Să considerăm o combinaţie liniară nulă a acestor p
vectori:

(1) (c11λ
n
1 + c21nλ

n
1 + · · ·+ cs11n

s1−1λn1 ) + · · ·+

+(c1qλ
n
q + c2qnλ

n
q + · · ·+ csqqn

sq−1λnq ) = 0.

Vom ordona termenii ce apar ı̂n relaţia (1) după următoarele criterii:
Presupunem ı̂ntâi că rădăcinile ecuaţiei caracteristice sunt ordonate după

mărimea modulului aşa fel ı̂ncât:

|λ1| ≥ |λ2| ≥ · · · ≥ |λq|.
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Dacă avem rădăcini de modul maxim egal, să zicem

|λ1| = · · · = |λr| = R > |λr+1| ≥ · · · ≥ |λq|

atunci primele le ordonăm după ordinul lor de multiplicitate, adică pre-
supunem că:

s1 ≥ s2 ≥ · · · ≥ sr.

Să presupunem şi ı̂n acest caz că am putea avea ordine de multiplicitate
maxime egale şi să notăm:

s1 = s2 = · · · = st = s > st+1 ≥ · · · ≥ sr.

Vom spune că termenii ns−1λn1 , n
s−1λn2 , · · · , ns−1λnt sunt dominanţi ı̂n

relaţia (1).
Ideea de demonstraţie este următoarea: vom arăta ı̂ntâi că toţi termenii

dominanţi din relaţia (1) au coeficienţii nuli; apoi vom re-ordona relaţia (1),
punând ı̂n evidenţă următorii termeni dominanţi şi vom repeta raţionamentul
până ce vom obţine că toţi coeficienţii din relaţia (1) sunt nuli. De aici va
rezulta că sistemul de vectori (S) este liniar independent.

Să observăm că un termen nkλnj nu este dominant dacă: j > r sau dacă
j ≤ r şi k < s − 1. Să observăm de asemenea că există un n0 ∈ N aşa fel
ı̂ncât pentru orice termen nkλnj care nu este dominant:

(∗)
|nkλnj |
ns−1Rn

≤ 1

n
,∀n ≥ n0.

Într-adevăr, dacă j > r |λj| < R şi deci

n ·
|nkλnj |
ns−1Rn

= nk−s+2 ·
(
|λj|
R

)n
→ 0

şi deci putem găsi n0 ∈ N aşa fel ı̂ncât

n ·
|nkλnj |
ns−1Rn

= nk−s+2 ·
(
|λj|
R

)n
< 1

ceea ce conduce imediat la relaţia (∗); deoarece k şi j parcurg mulţimi finite
de valori n0 se poate alege independent.
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Dacă j ≤ r şi k < s− 1 atunci |λj| = R şi deci

|nkλnj |
ns−1Rn

=
nk

ns−1
≤ ns−2

ns−1
=

1

n
.

Astfel, (∗) este demonstrată ı̂n toate cazurile posibile.
Să mai remarcăm că ı̂n relaţia (1) avem un număr finit de termeni şi deci

există un număr M > 0 aşa fel ı̂ncât:

(∗∗) |ckj| ≤M,∀j = 1, · · · , q,∀k = 1, · · · , sj.

Revenim la relaţia (1) unde păstrăm ı̂n primul membru doar termenii
dominanţi:

(2) cs1n
s−1λn1 + · · ·+ cstn

s−1λnt = −
(∑

′ckjn
kλnj

)
,

unde
∑

′ indică suma tuturor termenilor din membrul ı̂ntâi al relaţiei (1)

cu excepţia celor dominanţi.
Deoarece |λ1| = |λ2| = · · · = |λt| = R, rezultă că

λ1 = Reiα1 , λ2 = Reiα2 , · · · , λt = Reiαt ,

unde i =
√
−1 iar α1, α2, · · · , at ∈ [0, 2π) sunt distincte două câte două

deoarece λ1, λ2, · · · , λt sunt distincte două câte două.
Împărţim relaţia (2) cu ns−1Rn

(3) cs1e
iα1n + · · ·+ cste

iαtn = −

(∑
′ckj

nkλnj
ns−1Rn

)
.

În relaţia (3) luăm ı̂n modul ambii termeni, majorăm modulul membrului
doi cu suma modulelor şi utilizând condiţiile (∗) şi (∗∗) obţinem:

(4) |cs1eiα1n + · · ·+ cste
iαtn| ≤ p · M

n
,∀n ≥ n0.

Fie

D(n) =

∣∣∣∣∣∣∣∣
eiα1n eiα2n · · · eiαtn

eiα1(n+1) eiα2(n+1) · · · eiαt(n+1)

· · · · · · · · · · · ·
eiα1(n+t−1) eiα2(n+t−1) · · · eiαt(n+t−1)

∣∣∣∣∣∣∣∣ =
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= eiα1neiα2n · · · eiαtn

∣∣∣∣∣∣∣∣
1 1 · · · 1
eiα1 eiα2 · · · eiαt

· · · · · · · · · · · ·
eiα1(t−1) eiα2(t−1) · · · eiαt(t−1)

∣∣∣∣∣∣∣∣ .
Atunci

(5) |D(n)| =
∏

1≤j<k≤t

∣∣eiαk − eiαj ∣∣ .
Cum α1, α2, · · · , αt sunt distincte două câte două, se observă din (5) că |D(n)|
este un număr strict pozitiv independent de n.

Pe de altă parte dacă ı̂nmulţim prima coloană a determinantului D(n) cu
cs1 şi apoi ı̂nmulţim coloana a doua a determinantului cu cs2 şi o adunăm la
prima, ... , coloana t cu cst şi o adunăm la coloana ı̂ntâi obţinem:

cs1 ·D(n) =

∣∣∣∣∣∣∣∣
A1 eiα2n · · · eiαtn

A2 eiα2(n+1) · · · eiαt(n+1)

· · · · · · · · · · · ·
At eiα2(n+t−1) · · · eiαt(n+t−1)

∣∣∣∣∣∣∣∣ ,
unde, ∀k = 1, · · · , t, Ak = cs1 ·eiα1(n+k−1)+· · ·+cst ·eiαt(n+k−1). Din relaţia (4)
|Ak| ≤ pM

n
,∀n ≥ n0 şi, cum toate celelalte elemente ale determinantului de

mai sus sunt ı̂n modul egale cu 1, obţinem aplicând definiţia determinantului:

|cs1| · |D(n)| ≤ t! · pM
n
,∀n ≥ n0.

Ţinând cont de (5), D(n) este constant şi strict pozitiv şi deci relaţia de mai
sus poate avea loc doar dacă cs1 = 0.

Cu un raţionament asemănător se demonstrează că şi ceilalţi coeficienţi
ai termenilor dominanţi din (1) sunt nuli.

Aşa cum am anunţat deja, termenii dominanţi din (1) dispar şi, printr-un
proces de re-ordonare, găsim termenii dominanţi dintre cei rămaşi; continuăm
raţionamentul până ce obţinem toţi coeficienţii din relaţia (1) egali cu zero.

�

2.1.11 Observaţie. Dacă una dintre rădăcinile multiple este complexă
atunci vom proceda ca ı̂n cazul II.

Să presupunem de exemplu că λ1 = R · eiα = R(cosα + i sinα), unde
i =
√
−1 este multiplă de ordin s1; atunci este evident că λ2 = R · e−iα =
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R(cosα − i sinα) va avea ordinul de multiplicitate s2 = s1. În acest caz
primele două linii din sistemul de soluţii (S) se vor ı̂nlocui cu{

Rn cosnα, nRn cosnα, · · · , ns1−1Rn cosnα,
Rn sinnα, nRn sinnα, · · · , ns2−1Rn sinnα.

Ecuaţii liniare neomogene

2.1.12 Propoziţie. Fie recurenţa liniară neomogenă:

(R) f(n+ p) + a1(n) · f(n+ p− 1) + ...+ ap(n) · f(n) = a(n),∀n ∈ N

şi recurenţa liniară omogenă asociată ei:

(RO) f(n+ p) + a1(n) · f(n+ p− 1) + ...+ ap(n) · f(n) = 0, ∀n ∈ N;

dacă f 1, · · · fp sunt p soluţii liniar independente ale ecuţiei omogene (RO) şi
dacă f ∗ este o soluţie particulară a ecuaţiei neomogene (R), atunci soluţia
generală a ecuaţiei (R) este

f = c1 · f 1 + · · ·+ cp · fp + f ∗, ck ∈ R,∀k = 1, · · · , p.

Demonstraţie.
Este evident că, ∀c1, · · · , cp ∈ R,

∑p
k=1 ck · fk + f ∗ verifică ecuaţia (R).

Fie acum f o soluţie arbitrară a ecuaţiei (R); atunci, deoarece f ∗ este şi
ea soluţie pentru (R),

(1) f(n+ p) + a1(n) · f(n+ p− 1) + ...+ ap(n) · f(n) = a(n),∀n ∈ N,

(2) f ∗(n+ p) + a1(n) · f ∗(n+ p− 1) + ...+ ap(n) · f ∗(n) = a(n),∀n ∈ N.

Scădem (2) din (1) şi obţinem:

(f−f ∗)(n+p)+a1(n)·(f−f ∗)(n+p−1)+...+ap(n)·(f−f ∗)(n) = 0,∀n ∈ N.

Deci f − f ∗ este soluţie pentru ecuaţia (RO) şi astfel există c1, · · · , cp ∈ R
a.̂ı. (f − f ∗) =

∑p
k=1 ck · fk de unde f =

∑p
k=1 ck · fk + f ∗.

�

Rezultă din propoziţia precedentă că pentru a rezolva o recurenţă liniară
neomogenă este suficient să găsim o soluţie particulară a ei (binêınţeles ı̂n
ipoteza că putem rezolva ecuaţia omogenă asociată).
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Metoda de a găsi o astfel de soluţie particulară este metoda variaţiei
constantelor sau metoda lui Lagrange.

Să presupunem că f 1, · · · , fp sunt p soluţii liniar independente ale ecuaţiei
omogene (RO); ştim că soluţia generală a ecuaţiei omogene este

∑p
k=1 ck ·fk.

Vom căuta o soluţie particulară a ecuaţiei neomogene (R) considerând
că c1, · · · , cp de mai sus nu sunt constante ci şiruri pe care urmează să le
determinăm.

Deci ı̂ncercăm să determinăm o soluţie particulară a ecuaţiei omogene de
forma

f ∗(n) =

p∑
k=1

ck(n) · fk(n), n ∈ N.

Pentru a determina cele p şiruri necunoscute c1(n), · · · , cp(n) vom impune
lui f ∗ să verifice ecuţia (R) şi vom adăuga p − 1 condiţii suplimentare care
vor conduce la următorul sistem compatibil:

(1)
∑p

k=1 ck(n+ p)fk(n+ p) + a1(n)
∑p

k=1 ck(n+ p− 1)fk(n+ p− 1)+
+ · · ·+ ap(n)

∑p
k=1 ck(n)fk(n) = a(n)

(2)
∑p

k=1 ck(n+ 1)fk(n+ 1) =
∑p

k=1 ck(n)fk(n+ 1)
(3)
∑p

k=1 ck(n+ 2)fk(n+ 2) =
∑p

k=1 ck(n)fk(n+ 2)
· · ·

(p)
∑p

k=1 ck(n+ p− 1)fk(n+ p− 1) =
∑p

k=1 ck(n)fk(n+ p− 1).

Vom rezolva acest sistem transformându-l ı̂ntr-unul de ecuaţii cu diferenţe.
Întâi ı̂n ecuaţia (p) trecem n 7→ n + 1 şi vom obţine primul termen din

ecuaţia (1):

p∑
k=1

ck(n+ p)fk(n+ p) =

p∑
k=1

ck(n+ 1)fk(n+ p) =

=

p∑
k=1

∆ck(n)fk(n+ p) +

p∑
k=1

ck(n)fk(n+ p).

Termenii următori ai ecuaţiei (1) se modifică corespunzător cu ajutorul
ecuaţiilor (p), (p− 1), · · · , (2) ı̂n această ordine şi obţinem:

p∑
k=1

∆ck(n)fk(n+ p) +

p∑
k=1

ck(n)fk(n+ p) + a1(n)

p∑
k=1

ck(n)fk(n+ p− 1)+
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+ · · ·+ ap(n)

p∑
k=1

ck(n)fk(n) = a(n),

sau
p∑

k=1

∆ck(n)fk(n+ p)+

+

p∑
k=1

ck(n)
[
fk(n+ p) + a1(n)fk(n+ p− 1) + · · ·+ ap(n)fk(n)

]
= a(n).

Deoarece f 1, · · · , fp sunt soluţii ale ecuaţiei omogene (RO), parantezele pă-
trate din relaţia de mai sus se anulează şi astfel ecuaţia (1) devine:

(1′)

p∑
k=1

∆ck(n)fk(n+ p) = a(n).

Ecuaţia (2) se rescrie:

(2′)

p∑
k=1

∆ck(n)fk(n+ 1) = 0.

Dacă ı̂n ecuaţia (2) trecem n 7→ n+ 1 şi ı̂nlocuim ı̂n ecuaţia (3) obţinem:

(3′)

p∑
k=1

∆ck(n)fk(n+ 2) = 0.

Apoi vom trece ı̂n ecuaţia (3) pe n ı̂n n + 1 şi vom ı̂nlocui ı̂n ecuaţia (4)
pentru a obţine:

(4′)

p∑
k=1

∆ck(n)fk(n+ 3) = 0,

· · ·

(p′)

p∑
k=1

∆ck(n)fk(n+ p− 1) = 0.
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În sfârşit rescriem sistemul de mai sus plasând ecuaţia (1′) pe ultimul loc:

(S)



∑p
k=1 ∆ck(n)fk(n+ 1) = 0∑p
k=1 ∆ck(n)fk(n+ 2) = 0∑p
k=1 ∆ck(n)fk(n+ 3) = 0

· · ·∑p
k=1 ∆ck(n)fk(n+ p− 1) = 0∑p
k=1 ∆ck(n)fk(n+ p) = a(n).

Sistemul (S) are p ecuaţii cu p necunoscute: ∆c1(n), · · · ,∆cp(n). Determi-
nantul sistemului este determinantul lui Casorati D[f 1, · · · , fp](n+1) asociat
sistemului de p vectori liniar independenţi ı̂n spaţiul vectorial al soluţiilor
ecuaţiei omogene (RO); după propoziţia 2.1.8 acesta este nenul şi astfel sis-
temul (S) admite soluţie unică: ∆c1(n), · · · ,∆cp(n), unde, ∀k = 1, · · · , p,

∆ck(n) =

∣∣∣∣∣∣∣∣
f 1(n+ 1)

... fk−1(n+ 1) 0 fk+1(n+ 1)
... fp(n+ 1)

...
...

...
...

...
...

...

f 1(n+ p)
... fk−1(n+ p) a(n) fk+1(n+ p)

... fp(n+ p)

∣∣∣∣∣∣∣∣
D[f 1, ..., f p](n+ 1)

sau

∆ck(n) = (−1)p+ka(n)
Dk(n)

D(n)
,

unde am notat cu D(n) = D[f 1, · · · , fp](n+ 1) şi cu Dk(n) =

=

∣∣∣∣∣∣∣∣
f 1(n+ 1)

... fk−1(n+ 1) fk+1(n+ 1)
... fp(n+ 1)

...
...

...
...

...
...

f 1(n+ p− 1)
... fk−1(n+ p− 1) fk+1(n+ p− 1)

... fp(n+ p− 1)

∣∣∣∣∣∣∣∣
Putem atunci determina, până la o constantă aditivă, şirurile necunoscute

c1(n), · · · , cp(n); astfel, ∀k = 1, · · · , p,∀n ∈ N∗,

ck(n) = ck(0) +
n−1∑
l=0

∆ck(l) = ck(0) + (−1)p+k
n−1∑
l=0

a(l)
Dk(l)

D(l)
.

O soluţie particulară pentru ecuaţia neomogenă (R) va fi deci:

p∑
k=1

ck(n) · fk(n) =

p∑
k=1

ck(0)fk(n) +

p∑
k=1

(−1)p+k

(
n−1∑
l=0

a(l)
Dk(l)

D(l)

)
fk(n)
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dar, deoarece
∑p

k=1 ck(0)fk(n) este soluţie a ecuaţiei omogene, putem să luăm
ca soluţie particulară:

f ∗(n) =

p∑
k=1

(−1)p+k

(
n−1∑
l=0

a(l)
Dk(l)

D(l)

)
fk(n).

Atunci, după propoziţia 2.1.12, soluţia generală a ecuaţiei neomogene este:

f(n) =

p∑
k=1

ckf
k(n) +

p∑
k=1

(−1)p+k

(
n−1∑
l=0

a(l)
Dk(l)

D(l)

)
fk(n).

2.1.13 Observaţii. (i) Metoda variaţiei constantelor se poate aplica cu
succes ı̂n cazul ecuaţiilor liniare neomogene ale căror ecuaţii omogene aso-
ciate au coeficienţi constanţi. Într-adevăr, ı̂n acest caz, ecuaţia caracteris-
tică asociată ecuaţiei omogene permite găsirea unui sitem liniar independent
de soluţii pentru ecuaţia omogenă şi deci găsirea unei soluţii particulare a
ecuaţiei neomogene.

(ii) Din punct de vedere practic, metoda variaţiei constantelor este destul
de dificil de aplicat. În anumite cazuri particulare vom putea găsi mai uşor
soluţii particulare.

2.1.14 Teoremă. Fie recurenţa liniară neomogenă cu coeficienţi constanţi:

f(n+ p) + a1 · f(n+ p− 1) + ...+ ap · f(n) = Q(n)eαn, ∀n ∈ N,

unde Q este un polinom de grad q iar α ∈ R; fie

C(λ) = λp + a1λ
p−1 + · · ·+ ap

polinomul caracteristic asociat ecuaţiei omogene

f(n+ p) + a1 · f(n+ p− 1) + ...+ ap · f(n) = 0.

Atunci o soluţie particulară a ecuaţiei neomogene este de forma

f ∗(n) = R(n)eαn,

unde R este un polinom de grad r = q+ s, s fiind ordinul de multiplicitate al
rădăcinii eα pentru polinomul C (dacă eα nu este rădăcină pentru C, s = 0).
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mi Demonstraţie. Încercăm, pentru ecuaţia neomogenă, o soluţie
particulară de forma f ∗(n) = R(n)eαn, unde R este un polinom de grad r
ce urmează a fi determinat. Punând condiţia ca ecuaţia neomogenă să fie
verificată de f ∗ obţinem:

(1) R(n+ p)eα(n+p) +a1R(n+ p− 1)eα(n+p−1) + · · ·+apR(n)eαn = Q(n)eαn.

Simplificăm relaţia (1) cu eαn şi obţinem:

(2) R(n+ p)eαp + a1R(n+ p− 1)eα(p−1) + · · ·+ apR(n) = Q(n).

În relaţia (2) ı̂nlocuim, ∀k = 0, · · · , p,

R(n+ k) =
k∑
j=0

Cj
k∆

jR(n)(vezi relaţiile (T ) de la definiţia 2.1.1),

(3)

p∑
j=0

Cj
p∆

jR(n)eαp + a1

p−1∑
j=0

Cj
p−1∆jR(n)eα(p−1)+

+ · · ·+ ap

0∑
j=0

Cj
0∆jR(n) = Q(n).

Dacă ı̂n (3) re-ordonăm termenii obţinem:

(4)
(
C0
pe
αp + a1C

0
p−1e

α(p−1) + · · ·+ apC
0
p

)
∆0R(n)+

+
(
C1
pe
αp + a1C

1
p−1e

α(p−1) + · · ·+ ap−1C
1
1e
α
)

∆1R(n)+

+ · · ·+
(
Ck
p e

αp + a1C
k
p−1e

α(p−1) + · · ·+ ap−kC
k
ke

αk
)

∆kR(n)+

+ · · ·+
(
Cp−1
p eαp + a1C

p−1
p−1e

α(p−1)
)

∆p−1R(n) + C0
pe
αp∆pR(n) = Q(n).

Dacă ţinem cont de forma polinomului caracteristic C(λ) şi a derivatelor sale
putem re-scrie relaţia (4)

(5) C(eα)∆0R(n) + C ′(eα)eα∆1R(n) + · · ·+ 1

k!
C(k)(eα)eαk∆kR(n)+
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+ · · ·+ 1

p!
C(p)(eα)eαp∆pR(n) = Q(n).

Deoarece eα este rădăcină multiplă de ordin s pentru polinomul C, C(eα) =
C ′(eα) = · · · = C(s−1)(eα) = 0 şi deci din (5) rămâne

(6)
1

s!
C(s)(eα)eαs∆sR(n) + · · ·+ 1

p!
C(p)(eα)eαp∆pR(n) = Q(n).

În relaţia (6) ∆sR(n), · · · ,∆pR(n) sunt polinoame de grad respectiv r −
s, · · · , r − p şi deci pentru a putea identifica coeficienţii lui R trebuie ca
r − s = q sau r = q + s. Să mai remarcăm că, dacă ı̂nlocuim ı̂n (6) R(n) =∑p

j=0Ajn
p−j atunci ∆sR(n) = ∆s

(
p−s∑
j=0

Ajn
p−j

)
şi deci ı̂n membrul stâng

al relaţiei (6) rămân q + 1 necunoscute care urmează a fi determinate prin
identificarea coeficienţilor cu acei ai polinomului Q.

�

2.1.15 Observaţii. (i) Rezultă din demonstraţia de mai sus că polinomul
necunoscut R trebuie căutat de forma R(n) = A0n

q+s+A1n
q+s−1+· · ·+Aqns.

În cazul ı̂n care eα nu este rădăcină a polinomului C, s = 0 şi deci R va
fi un polinom de acelaşi grad cu Q.

(ii) Dacă căutăm o soluţie particulară pentru ecuaţia neomogenă

f(n+ p) + a1 · f(n+ p− 1) + ...+ ap · f(n) = Q(n),∀n ∈ N,

unde Q este un polinom de grad q, atunci putem aplica rezultatul din teo-
rema precedentă cu α = 0. Concluzia este că soluţia particulară trebuie
căutată sub forma unui polinom de grad q dacă 1 nu este soluţie a ecuaţiei
caracteristice.

Dacă 1 este rădăcină multiplă de ordin S a ecuaţiei caracteristice atunci
soluţia particulară Q trebuie căutată de forma:

R(n) = A0n
q+s + A1n

q+s−1 + · · ·+ Aqn
s.

2.2 Media aritmetico-geometrică

Algoritmul dublu format din media aritmetică şi media geometrică (algorit-
mul (A,G)) este unul dintre cei mai importanţi algoritmi neliniari; legăturile
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sale cu una dintre cele mai profunde teorii, aceea a funcţiilor şi integralelor
eliptice, ne-au determinat să-i dedicăm această secţiune.

Media aritmetico – geometrică a apărut ı̂ntr-un memoriu al lui Lagrange
publicat ı̂n 1784 – 1785. Adolescent fiind, Gauss redescoperă algoritmul.
Contribuţia sa majoră, care include o reprezentare integrală elegantă a limi-
tei, a fost făcută, ı̂nsă, cu 7-9 ani mai târziu. În 1816, Gauss arată, ı̂ntr-o
scrisoare adresată lui H.C. Schumacher, că a descoperit independent media
aritmetico – geometrică ı̂n 1791, la vârsta de 14 ani. La vârsta de 22-23
de ani, Gauss a scris o lucrare ı̂n care descrie descoperirile sale cu privire
la media aritmetică geometrică. Această lucrare nu a fost publicată decât
după moartea sa, ca de altfel multe alte lucrări ale lui. În mod evident
Gauss a acordat o importanţă deosebită algoritmului (A, G) mărturie stând
numeroasele referiri făcute ı̂n jurnalul său ı̂n perioada 1799 – 1800. Unele
referiri sunt destul de vagi şi este foarte posibil să nu fi aflat ı̂ncă totul despre
descoperirile lui Gauss ı̂n această privinţă.

Prezentăm teorema lui Gauss cu două demonstraţii; una aparţine lui
Gauss iar cealaltă este demonstraţia lui Legendre care utilizează transfor-
marea Landen.

Presupunem că a > b > 0; algoritmul mediilor aritmetico-geometrice este:

(A−G)

 an =
an−1 + bn−1

2
bn =

√
an−1bn−1

, n ≥ 1, a0 = a, b0 = b.

Folosind inegalitatea cunoscută dintre media geometrică şi cea aritmetică
se poate uşor arăta că, ∀n ∈ N,

0 < b = b0 ≤ b1 ≤ ... ≤ bn ≤ an ≤ ... ≤ a1 ≤ a0 = a.

Rezultă de aici că şirurile (an)n şi (bn)n sunt convergente şi, trecând la limită
ı̂n una dintre relaţiile de recurenţă de mai sus, obţinem că limn→∞ an =
limn→∞ bn. Valoarea comună a celor două limite se notează cu M(a, b),
marcând faptul că ea depinde de valorile iniţiale a şi b; M(a, b) se va numi
media aritmetico-geometrică a numerelor a şi b.

Gauss dă patru exemple numerice prin care probează viteza mare de
convergenţă a algoritmului mediilor aritmetico-geometrice; prezentăm doar
unul dintre acestea:

Fie a = 1 şi b = 0, 8; atunci:
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a1 = 0, 9
a2 = 0, 897213595499957939282...
a3 = 0, 897211432116346...
a4 = 0, 897211432115042...
......
b1 = 0, 8944271909999158785654...
b2 = 0, 897209268732734...
b3 = 0, 897211432113738...
b4 = 0, 897211432115042...

Propoziţia de mai jos pune ı̂n evidenţă o formulă de calcul a erorii care
ilustrează viteza mare de convergenţa a acestui algoritm.

2.2.1 Propoziţie. Fie a > b > 0; şirurile (an) şi (bn) generate de algorit-
mul (A−G) verifică relaţia:

(∗) an − bn ≤ 8b ·
(
a− b

8b

)2n

, ∀n ∈ N.

Demonstraţie. Fie n ∈ N∗; atunci

an − bn =
an−1 + bn−1

2
−
√
an−1 · bn−1 =

(
√
an−1 −

√
bn−1)2

2
=

=
(an−1 − bn−1)2

2(
√
an−1 +

√
bn−1)2

≤ (an−1 − bn−1)2

2 · 22 · b
,

de unde

(1) an − bn ≤
(an−1 − bn−1)2

8b
.

În relaţia (1) trecem n 7→ n− 1 şi obţinem:

(2) an−1 − bn−1 ≤
(an−2 − bn−2)2

8b
, n ≥ 2.

Din relaţiile (1) şi (2) obţinem prin iteraţii repetate:

an−bn ≤
(an−2 − bn−2)22

(8b) · (8b)2
≤ (an−3 − bn−3)23

(8b) · (8b)2 · (8b)22
≤ · · · ≤ (a− b)2n

(8b)1+2+22+...+2n−1 =

= 8b ·
(
a− b

8b

)2n

.

�
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2.2.2 Observaţii. (i) Este evident că media aritmetico-geometrică este o
funcţie simetrică:

M(a, b) = M(b, a),∀a, b > 0.

(ii) Dacă presupunem că pornim algoritmul cu (a1, b1) ı̂n loc de (a, b),
cum toţi termenii (an, bn) , n ≥ 1, rămân neschimbaţi, rezultă că M (a, b) =
M (a1, b1). Deci

M (a, b) = M

(
a+ b

2
,
√
ab

)
,∀a, b > 0.

(iii) Să presupunem că plecăm cu valorile iniţiale a′ = c · a şi b′ = c · b,
unde c este un număr strict pozitiv fixat; atunci

a′1 = c · a1, b
′
1 = c · b1, ..., a

′
n = c · an, b′n = c · bn, ....

Rezultă că
M (c · a, c · b) = c ·M (a, b) ,∀c > 0.

Pentru a putea obţine o reprezentare integrală a mediei aritmetico-geo-
metrice vom defini integralele eliptice complete de prima specie.

2.2.3 Definiţie. Integrala

K(x) =

∫ π
2

0

dt√
1− x2 sin2 t

, |x| < 1

se numeşte integrala eliptică completă de prima specie.

În teorema următoare dăm reprezentarea integrală a lui Gauss pentru
M(1 + x, 1− x).

2.2.4 Teoremă (Gauss – 1799, publicată ı̂n 1818).

M(1 + x, 1− x) =
π

2 ·K(x)
=

π

2 ·
∫ π

2

0

dt√
1− x2 sin2 t

,∀x ∈ (−1, 1).

În cele ce urmează vom prezenta două demonstraţii diferite ale teoremei
2.2.4.
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mi Demonstraţia lui Gauss

Funcţia M fiind simetrică (vezi punctul (i) din 2.2.2),
M (1 + (−x) , 1− (−x)) = M (1− x, 1 + x) = M (1 + x, 1− x)
deci M este o funcţie pară de x. Putem atunci presupune că

(1)
1

M (1 + x, 1− x)
=
∞∑
k=0

Akx
2k.

Facem substituţia x =
2t

1 + t2
. Din 2.2.2 obţinem că:

M (1 + x, 1− x) = M

(
1 +

2t

1 + t2
, 1− 2t

1 + t2

)
= M

(
(1 + t)2

1 + t2
,
(1− t)2

1 + t2

)

=
1

1 + t2
M
(
(1 + t)2 , (1− t)2) =

=
1

1 + t2
·M

(
(1 + t)2 + (1− t)2

2
,
√(

(1 + t)2 (1− t)2)) =

=
1

1 + t2
·M

(
1 + t2, 1− t2

)
Înlocuind ı̂n (1), obţinem:

1 + t2

M (1 + t2, 1− t2)
=

∞∑
k=0

Ak

(
2t

1 + t2

)2k

, de unde, utilizând din nou (1),

obţinem relaţia

(1 + t2)
∞∑
k=0

Akt
4k =

∞∑
k=0

Ak
(

2t
1+t2

)2k
sau

(2)
∞∑
k=0

Akt
4k =

∞∑
k=0

Ak2
2kt2k

(
1 + t2

)−2k−1
.

Reamintim formula seriei binomiale:

(1 + x)α = 1 +
∞∑
n=1

α (α− 1) ... (α− n+ 1)

n!
xn,∀α ∈ R,∀x ∈ (−1, 1).
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Deci: (1 + t2)
−2k−1

= 1 +
∞∑
n=1

(2k + 1) (2k + 2) ... (2k + n)

n!
(−1)n t2n =

= 1 +
∞∑
n=1

Cn
2k+n (−1)n t2n.

Revenind ı̂n relaţia (2) obţinem:

∞∑
k=0

Akt
4k =

∞∑
k=0

[
Ak2

2kt2k

(
1 +

∞∑
n=1

(−1)nCm
2k+nt

2n

)]
=

=
∞∑
k=0

[
Ak2

2kt2k
(
1− C1

2k+1t
2 + C2

2k+2t
4 + ...+ (−1)nCn

2k+nt
2n + ...

)]
=

=
∞∑
k=0

[Ak2
2kt2k − C1

2k+1Ak2
2kt2k+2 + ...+ (−1)nCn

2k+nAk2
2kt2k+2n + ...] =

= (A0 − A0t
2 + A0t

4 − A0t
6 + ...+ (−1)nA0t

2n + ...)+

+
(
A122t2 − C1

3A122t4 + C2
4A122t6 + ...+ (−1)nA1C

n
n+222t2n+2 + ....

)
+

+
(
A224t4 − C1

5A224t6 + C2
6A224t8 + ...+ (−1)nCn

n+4A224t2n+4 + ...
)

+ ...

Deci

(3)
∞∑
k=0

Akt
4k = A0 +

(
−A0 + 22A1

)
t2 +

(
A0 − C1

322A1 + 24A2

)
· t4+

+
(
−A0 + C2

4A122 − C1
5A224 + A326

)
· t6 + ...

În relaţia (1) facem x = 0,

A0 =
1

M(1, 1)
= 1.

Identificăm apoi coeficienţii ı̂n relaţia (3) şi obţinem:

0 = −A0 + 22A1 ⇒ A1 =
1

22
=

(
1

2

)2

,

A1 = A0 − C1
322A1 + 24A2 ⇒ A2 =

9

26
=

(
1 · 3
2 · 4

)2
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0 = −A0 + C2
4A122 − C1

5A224 + A326 ⇒ A3 =
25

28
=

(
1 · 3 · 5
2 · 4 · 6

)2

În mod analog obţinem

Ak =

[
1 · 3 · · · (2k − 1)

2 · 4 · · · (2k)

]2

,∀k ∈ N∗.

Revenind la relaţia (1) obţinem

1

M (1 + x, 1− x)
= 1 +

(
1

2

)2

x2 +

(
1 · 3
2 · 4

)2

x4 +

(
1 · 3 · 5
2 · 4 · 6

)2

x6 + ...

sau

(4)
1

M (1 + x, 1− x)
= 1 +

∞∑
k=1

[
1 · 3 · · · (2k − 1)

2 · 4 · · · (2k)

]2

· x2k.

Dezvoltăm acum ı̂n serie integrala K (x).
Pentru aceasta vom dezvolta integrantul lui K (x) ı̂n serie binomială şi

vom integra termen cu termen seria astfel obţinută.

(
1− x2 sin2 t

)− 1
2 = 1 +

(
−1

2

)(
−x2 sin2 t

)
+

(
−1

2

) (
−1

2
− 1
)

2!
x4 sin4 t+ ...+

+

(
−1

2

) (
−1

2
− 1
)
...
(
−1

2
− 1− k

)
k!

(−1)k x2k sin2k t+ ... =

= 1 +
∞∑
k=1

(−1)k
(

1

2

)k
1 · 3 · ... (2k − 1)

k!
(−1)k x2k sin2k t =

= 1 +
∞∑
k=1

1 · 3 · ... (2k − 1)

2kk!
x2k sin2k t.

Deci, integrând seria de mai sus :

K (x) =

∫ π/2

0

[
1 +

∞∑
k=1

(2k − 1)!!

2kk!
x2k sin2k t

]
dt =

=
π

2
+

∫ π/2

0

∞∑
k=1

(2k − 1)!!

2kk!
x2k sin2k tdt
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sau

(5) K (x) =
π

2
+
∞∑
k=1

(2k − 1)!!

2kk!
x2k

∫ π/2

0

sin2k tdt.

Să calculăm acum

In =

∫ π/2

0

sinn tdt =

∫ π/2

0

(− cos t) sinn−1 tdt =

= − cos t sinn−1 t
∣∣∣π/20 + (n− 1)

∫ π/2

0

cos2 t sinn−2 tdt =

= 0 + (n− 1)

∫ π/2

0

(
1− sin2 t

)
sinn−2 tdt = (n− 1) In−2 − (n− 1) In

Deci :

In = (n− 1) In−2 − (n− 1) In ⇒ nIn = (n− 1) In−2 ⇒ In =
n− 1

n
In−2.

I0 = π
2

şi I1 =
∫ π/2

0
sin tdt = − cosx

∣∣∣π/20 = 1

Deci avem:

I2 =
1

2
I0,

I4 =
3

4
I2,

I6 =
5

6
I4,

..................

I2n =
2n− 1

2n
I2n−2

de unde

I2n =
1

2

3

4

5

6
....

2n− 1

2n

π

2
=

(2n− 1)!!

(2n)!!

π

2
.

I3 =
2

3
I1,

I5 =
4

5
I3,
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I7 =
6

7
I5,

...................

I2n+1 =
2n

2n+ 1
I2n−1

de unde

I2n+1 =
2

3

4

5

6

7
...

2n

2n+ 1
I1 =

(2n)!!

(2n+ 1)!!
.

Am obţinut că:

I2k =

∫ π/2

0

sin2k tdt =
(2k − 1)!!

(2k)!!

π

2

Aşadar, revenind la (5):

K (x) =
π

2
+
∞∑
k=1

(2k − 1)!!

2kk!
x2k (2k − 1)!!

(2k)!!

π

2
=
π

2
+
∞∑
k=1

π

2

[(2k − 1)!!]2

[2k!!]2
x2k

Deci, din (4)

K (x) =
π

2
· 1

M (1 + x, 1− x)

sau
M (1 + x, 1− x) =

π

2K (x)
.

�

mi Demonstraţia lui Legendre

Această demonstraţie a fost obţinută de Legendre ı̂n 1825 utilizând o idee a
matematicianului englez Landen (1719 – 1790).

Fie (an)n şi (bn)n şirurile mediilor aritmetice, respectiv geometrice, care

converg la limita comună M(a, b) şi fie, ∀n ∈ N, xn =

√
a2
n − b2

n

an
; atunci

xn → 0. În plus, x0 =

√
a2 − b2

a
= x (vezi demonstraţia corolarului 2.2.6)

iar, ∀n ∈ N,

(1) xn+1 =

√
a2
n+1 − b2

n+1

an+1

=

√(
an+bn

2

)2 − anbn
an+bn

2

=
an − bn
an + bn
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În integrala eliptică completă de ordinul ı̂ntâi K(x) =

∫ π
2

0

dt√
1− x2 sin2 t

facem substituţia:

(2) tgs =
sin 2t

x1 + cos 2t
,

substituţie numită transformarea Landen

(
aici x1 =

√
a2

1 − b2
1

a1

=
a− b
a+ b

)
.

Diferenţiind relaţia (2) obţinem:

(3)
ds

cos2 s
=

2(1 + x1 cos 2t)

(x1 + cos 2t)2
dt.

Să calculăm acum

ds√
1− x2

1 sin2 s
=

cos2 s√
1− x2

1 sin2 s
· ds

cos2 s
.

Din (3) obţinem

ds√
1− x2

1 sin2 s
=

1√
1 + tg2s ·

√
1 + (1− x2

1)tg2s
· 2(1 + x1 cos 2t)

(x1 + cos 2t)2
dt =

=
1√

1 + sin2 2t
(x1+cos 2t)2

·
√

1 + (1− x2
1) sin2 2t

(x1+cos 2t)2

· 2(1 + x1 cos 2t)

(x1 + cos 2t)2
dt =

=
2dt√

(x1 + 1)2 − 2x1 · 2 sin2 t
=

2dt

(x1 + 1) ·
√

1− 4x1
(x1+1)2

sin2 t
.

Din relaţia (1) obţinem

4x1

(x1 + 1)2
=

4
a− b
a+ b(

a−b
a+b

+ 1
)2 =

a2 − b2

a2
= x2

Înlocuind ı̂n relaţia de mai sus obţinem

ds√
1− x2

1 sin2 s
=

2dt

(x1 + 1) ·
√

1− x2 sin2 t
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sau

(4)
dt√

1− x2 sin2 t
=
x1 + 1

2
· ds√

1− x2
1 sin2 s

.

Deoarece t ∈
[
0, π

2

]
, 2t ∈ [0, π] şi deci există un t0 ∈

[
0, π

2

]
unic aşa ı̂ncât

cos 2t0 = −x1. Atunci:

K (x) =

π/2∫
0

dt√
1− x2 sin2 t

=

t0∫
0

dt√
1− x2 sin2 t

+

π/2∫
t0

dt√
1− x2 sin2 t

Observăm că atunci când t ↑ t0, cos 2t ↓ cos 2t0 = −x1 ⇒ tgs = sin 2t
x1+cos2t

→
+∞ ⇒ s → π

2
iar atunci când t ↓ t0 cos 2t ↑ cos 2t0 = −x1 ⇒ tgs =

sin 2t
x1+cos 2t

→ −∞⇒ s→ −π
2
.

Deci:

K (x) =

π/2∫
0

1 + x1

2

ds√
1− x2

1 sin2 s
+

0∫
−π/2

1 + x1

2

ds√
1− x2

1 sin2 s
=

=
1 + x1

2
·

π/2∫
−π/2

ds√
1− x2

1 sin2 s
= (x1 + 1) ·K(x1).

După n iteraţii deducem că:

(5) K (x) = (1 + x1) (1 + x2) ... (1 + xn)K (xn) .

Utilizând din nou relaţia (1) obţinem 1 + xk = 2ak−1

ak−1+bk−1
= ak−1

ak
şi atunci

relaţia (5) se scrie

(6) K(x) =
a

an
·K(xn),∀n ∈ N.

Trecând la limită ı̂n relaţia (6) obţinem

K(x) =
a

M(a, b)
· π

2

care, ı̂n baza celor observate ı̂n demonstraţia corolarului 2.2.6, reprezintă
chiar concluzia teoremei 3.1.11.

�
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2.2.5 Observaţie. Transformarea Landen a fost introdusă ı̂n anul 1771.
Există mai multe versiuni de transformări Landen. Cel mai adesea, trans-
formarea Landen este exprimată printr-o egalitate ı̂ntre două diferenţiale de
forma relaţiei (4) din demonstraţia precedentă.

Rezultatul din teorema 2.2.4 permite obţinerea lui M(a, b) oricare ar fi nu-
merele pozitive a şi b.

2.2.6 Corolar.

M(a, b) =
π

2 ·
∫ π

2

0

dt√
a2 sin2 t+ b2 cos2 t

,∀a, b > 0.

Demonstraţie. Fie

I (a, b) =

π/2∫
0

(
a2 sin2 t+ b2 cos2 t

)− 1
2 dt =

π/2∫
0

(
a2 cos2 t+ b2 sin2 t

)− 1
2 dt.

Observăm că

I (a, b) =

π/2∫
0

(
a2
(
1− sin2 t

)
+ b2 sin2 t

)− 1
2 dt =

=
1

a

π/2∫
0

a
[
a2
(
1− sin2 t

)
+ b2 sin2 t

]− 1
2 dt =

=
1

a

π/2∫
0

[
a2 − a2 sin2 t+ b2 sin2 t

a2

]− 1
2

dt =

=
1

a

π/2∫
0

[
1− a2 − b2

a2
sin2 t

]− 1
2

dt =
1

a

π/2∫
0

[
1− x2 sin2 t

]− 1
2 dt =

1

a
K (x) ,

unde x =

√
a2 − b2

a
.

Pe de altă parte, ţinând cont de punctele (ii) şi (iii) ale observaţiei 2.2.2,
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M (1 + x, 1− x) = M

(
1 +

1

a

√
a2 − b2, 1− 1

a

√
a2 − b2

)
=

= M

(
1+ 1

a

√
a2−b2+1− 1

a

√
a2−b2

2
,
√(

1 + 1
a

√
a2 − b2

) (
1− 1

a

√
a2 − b2

))
=

= M

(
1,
√

1− a2−b2
a2

)
= M

(
1,
√

b2

a2

)
=

= M
(
1, b

a

)
= M

(
a
a
, b
a

)
= 1

a
M (a, b)

Şi atunci, folosind teorema 2.2.4, avem:

M(a, b) = a ·M(1 + x, 1− x) = · π

2 ·K(x)
=

π

2 · I(a, b)
.

�

2.3 Integrale eliptice; formula lui Legendre

În acest paragraf vom introduce şi integralele eliptice de specia a doua şi
vom demonstra formula lui Legendre care leagă cele două tipuri de integrale.
Rezultatele pe care le stabilim vor fi utilizate ı̂n ultimul paragraf pentru
obţinerea unor formule de calcul al perimetrului lemniscatei lui Bernoulli şi
al elipsei.

2.3.1 Definiţie. Integrala

E (x) =

π
2∫

0

√
1− x2 sin2 t dt, |x| < 1

se numeşte integrala eliptică completă de specia a doua.
Reamintim că integrala eliptică completă de specia ı̂ntâi este:

K(x) =

∫ π
2

0

dt√
1− x2 sin2 t

, |x| < 1.

În cele ce urmează prezentăm o formulă care leagă cele două tipuri de
integrale eliptice, formulă datorată lui Legendre.

2.3.2 Teoremă. Fie x ∈ (0, 1) şi fie x′ =
√

1− x2; atunci:

(L) K (x)E (x′) +K (x′)E (x) = K (x)K (x′) +
π

2
.
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mi Demonstraţie. Fie c = x2 şi c′ = 1− c; atunci formula (L) revine la

(l) k(c) · e(1− c) + k(1− c) · e(c) = k(c) · k(1− c) +
π

2
, 0 < c < 1,

unde k(c) =

∫ π
2

0

dt√
1− c sin2 t

, iar e(c) =

∫ π
2

0

√
1− c sin2 tdt. Fie funcţia

l : (0, 1)→ R definită prin:

l(c) = e(c) · k(1− c) + e(1− c) · k(c)− k(c) · k(1− c).

l este funcţie derivabilă pe (0, 1); să calculăm derivata sa.

e′(c) =

∫ π
2

0

− sin2 t

2
√

1− c sin2 t
dt =

1

2c

∫ π
2

0

1− c sin2 t− 1√
1− c sin2 t

dt,

de unde

(1) e′(c) =
1

2c
[e(c)− k(c)] .

(2) k′(c) = − 1

2c
k(c) +

1

2c

∫ π
2

0

dt

(1− c sin2 t)
3
2

.

Pentru evaluarea termenului al doilea din (2) observăm că:

(3)

(
sin t cos t√
1− c sin2 t

)′
t

=
c− 1

c
· 1

(1− c sin2 t)
3
2

+
1

c
·
√

1− c sin2 t.

Dacă integrăm relaţia (3) ı̂n raport cu t pe intervalul [0, π
2
] obţinem:

0 =
c− 1

c
·
∫ π

2

0

dt

(1− c sin2 t)
3
2

+
1

c
· e(c)

şi deci, revenind la relaţia (2):

(4) k′(c) =
1

2cc′
[e(c)− c′k(c)] , c′ = 1− c.
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Evident că [e(1 − c)]′ = −e′(1 − c) şi [k(1 − c)]′ = −k′(1 − c); utilizând
formulele (1) şi (4) obţinem, ∀c ∈ (0, 1),

l′(c) =
1

2c
·e(c)·k(1−c)− 1

2c
·k(c)·k(1−c)− 1

2cc′
·e(c)·e(1−c)+ 1

2c′
·e(c)·k(1−c)−

− 1

2c′
·e(1−c)·k(c)+

1

2c′
·k(c)·k(1−c)+

1

2cc′
·e(c)·e(1−c)− 1

2c
·k(c)·e(1−c)−

− 1

2cc′
·e(c)·k(1−c)+

1

2c
·k(c)·k(1−c)+

1

2cc′
·e(1−c)·k(c)− 1

2c′
·k(c)·k(1−c) =

=

(
1

2c
+

1

2c′
− 1

2cc′

)
·e(c) ·k(1−c)+

(
− 1

2c
− 1

2c′
+

1

2cc′

)
·e(1−c) ·k(c) = 0.

Deoarece derivata funcţiei l este zero pe intervalul (0, 1) funcţia este constantă
pe acest interval; fie l0 ∈ R aşa fel ı̂ncât:

(5) l(c) = l0,∀c ∈ (0, 1).

Pe de altă parte,

l(c) = (e(c)− k(c)) · k(1− c)︸ ︷︷ ︸
l1(c)

+ e(1− c) · k(c)︸ ︷︷ ︸
l2(c)

.

|l1(c)| = c ·
∫ π

2

0

sin2 t√
1− c sin2 t

dt ·
∫ π

2

0

dt√
cos2 t+ c sin2 t

dt ≤

≤
∫ π

2

0

dt√
c cos2 t+ c sin2 t

dt

sau

|l1(c)| ≤
√
c · π

2
·
∫ π

2

0

sin2 t√
1− c sin2 t

dt şi deci lim
c→0

l1(c) = 0.

Deoarece

lim
c→0

l2(c) =

∫ π
2

0

√
cos2 tdt · π

2
=
π

2
,

rezultă că
lim
c→0

l(c) =
π

2
.

Din (5) ı̂nsă
lim
c→0

l(c) = l0



64 Capitolul 2. Recurenţe liniare şi neliniare

şi deci l0 = π
2
. Rezultă atunci că

l(c) =
π

2
,∀c ∈ (0, 1)

ceea ce ı̂ncheie demonstraţia.
�

2.3.3 Observaţie. Să remarcăm că dacă x = 1√
2

atunci x = x′ şi deci
formula lui Legendre se scrie sub forma simplificată

2K

(
1√
2

)
· E
(

1√
2

)
−K2

(
1√
2

)
=
π

2
.

Vom utiliza această formă redusă a formulei lui Legendre pentru a demonstra
o formulă integrală interesantă.

2.3.4 Corolar.

K

(
1√
2

)
=
√

2

∫ 1

0

1√
1− x4

dx, E

(
1√
2

)
=

1√
2

∫ 1

0

1 + x2

√
1− x4

dx

şi astfel relaţia din observaţia precedentă devine∫ 1

0

1√
1− x4

dx ·
∫ 1

0

x2

√
1− x4

dx =
π

4

Demonstraţie. În integralele

K

(
1√
2

)
=
√

2

∫ π
2

0

dt√
2− sin2 t

şi E

(
1√
2

)
=

1√
2

∫ π
2

0

√
2− sin2 tdt

facem schimbarea de variabilă cos t = x şi obţinem:

K

(
1√
2

)
=
√

2

∫ 1

0

1√
1− x4

dx şi respectiv E

(
1√
2

)
=

1√
2

∫ 1

0

1 + x2

√
1− x4

dx.

Înlocuim acum aceste valori ı̂n forma redusă a formulei lui Legendre (vezi
observaţia 2.3.3) şi obţinem

2

∫ 1

0

1√
1− x4

dx ·
∫ 1

0

1 + x2

√
1− x4

dx− 2

(∫ 1

0

1√
1− x4

dx

)2

=
π

2

de unde rezultă imediat relaţia de demonstrat.
�
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2.3.5 Observaţii. (i) Formula din corolarul precedent a fost demonstrată
pentru prima dată de Euler, ı̂n 1782; formulări echivalente au fost stabilite
mai devreme de Landen şi de Wallis.

(ii) Dacă ı̂n integrala
∫ 1

0
x2√
1−x4dx facem schimbarea de variabilă 1−x4 7→

x2, obţinem: ∫ 1

0

x2

√
1− x4

dx =
1

2

∫ 1

0

1
4
√

1− x2
dx

şi astfel formula de mai sus revine la:∫ 1

0

1√
1− x4

dx ·
∫ 1

0

1
4
√

1− x2
dx =

π

2
.

2.4 Perimetrul lemniscatei şi al elipsei

Perimetrul lemniscatei

Funcţiile eliptice şi integralele corespunzătoare ı̂şi datorează numele proble-
mei rectificării arcului de elipsă, ı̂nsă problema cu adevărat fructuoasă a fost
rectificarea arcului de lemniscată.

În 1694, Jacob Bernoulli publica ı̂n Acta Eruditorum un articol despre o
curbă “ce are forma cifrei opt”. Bernoulli a numit acestă curbă lemniscată
(lat. lemniscus = panglică).

Proprietăţile generale ale lemniscatei au fost studiate de Giovanni Fag-
nano (1715-1797). Fagnano arată cum se poate dubla arcul de lemniscată
cu rigla şi compasul. Euler se ocupă şi el de acestă problemă stabilind un
rezultat general de adunare a arcelor de lemniscată.

După aproape o jumătate de secol de la descoperirea lui Euler a teore-
mei de adunare a arcelor de lemniscată, Gauss inversează problema, privind
coordonata radială r ca funcţie de lungimea arcului. Dacă se presupune că
r ı̂şi schimbă semnul când trece prin zero, funcţia ce se obţine este calitativ
similară cu funcţia sinus şi se numeşte sinusul lemniscatic. Este periodică
cu o perioadă egală cu perimetrul lemniscatei. Gauss extinde acestă funcţie
ı̂n planul complex obţinând astfel prima funcţie eliptică (dublu periodică
şi meromorfă); perioada reală a acestei funcţii se exprimă cu ajutorul in-
tegralelor eliptice de prima specie şi astfel poate fi aproximată cu ajutorul
algoritmului mediilor aritmetico – geometrice ale lui 1 şi

√
2; ulterior, Gauss

arată că media aritmetico - geometrică este, ı̂n general, strâns legată de pe-
rioadele funcţiilor eliptice.
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Lemniscata se poate defini ca locul geometric al punctelor din plan pen-
tru care produsul distanţelor la două puncte fixe este constant. Bernoulli
consideră punctele fixe din plan F1(− 1√

2
, 0) şi F2( 1√

2
, 0) iar constanta pro-

dus 1
2
. Este uşor atunci să obţinem ecuaţia pe care trebuie să o satisfacă

coordonatele (x, y) ale unui punct generic de pe lemniscată

(x2 + y2)2 = x2 − y2.

Dacă trecem la coordonate polare:{
x = r cos t
y = r sin t

, r ≥ 0, t ∈ [0, 2π),

obţinem ecuaţia ı̂n coordonate polare

r2 = cos 2t.

Această curbă este simetrică faţă de cele două axe de coordonate şi atunci
vom studia doar comportarea ei ı̂n primul cadran, restrângând domeniul de
variaţie a argumentului t la intervalul [0, π

2
]. Obţinem atunci din ecuaţia ı̂n

coordonate polare a lemniscatei
cos t =

√
1 + r2

2

sin t =

√
1− r2

2

, r ∈ [0, 1].

Întorcându-ne la ecuaţiile ı̂n coordonate polare obţinem ecuaţiile parametrice
ale lemniscatei: 

x =
1√
2

√
r2 + r4

y =
1√
2

√
r2 − r4

, r ∈ [0, 1].

Funcţiile x şi y sunt derivabile şi
x′r =

1 + 2r2

√
2
√

1 + r2

y′r =
1− 2r2

√
2
√

1− r2

.
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Atunci

y′x =
y′r
x′r

=
(1− 2r2)

√
1 + r2

(1 + 2r2)
√

1− r2
, r ∈ [0, 1).

Prezentăm mai jos un tabel de variaţie şi un grafic al lemniscatei ı̂n primul
cadran.

x

y′x

y(x)

0
√

3
2
√

2
1

1 0 (−∞)

0
1

2
√

2 0

+ −

1 q

6

-

y

x

(
√

3
2
√

2
, 1

2
√

2
)

0

Folosind simetria curbei faţă de axe obţinem graficul complet al lemnis-
catei lui Bernoulli.

6

-

Lungimea acestei curbe este:

L = 4 ·
∫ 1

0

√
(x′r)

2 + (y′r)
2dr = 4 ·

∫ 1

0

1√
1− r4

dr.

Am remarcat ı̂n corolarul 2.3.4 că∫ 1

0

1√
1− r4

dr =
1√
2
·K
(

1√
2

)
şi deci

L = 2
√

2 ·K
(

1√
2

)
.
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Din teorema lui Gauss (teorema 2.2.4) şi din observaţiile 2.2.2 obţinem:

K

(
1√
2

)
=

π

2 ·M
(

1 + 1√
2
, 1− 1√

2

) =
π

2 ·M
(

1, 1√
2

) =
π√

2 ·M(
√

2, 1)

şi deci lungimea lemniscatei va fi:

L =
2π

M(
√

2, 1)
.

Fie (an)n∈N şi (bn)n∈N şirurile algoritmului mediilor aritmetico-geometrice
pentru care a0 =

√
2 şi b0 = 1. Atunci bn ↑M(

√
2, 1) şi an ↓M

√
2, 1) şi deci

2π

an
↑ L ↓ 2π

bn
.

Putem folosi algoritmul (A − G) pentru calculul aproximativ al lungimii
lemniscatei. Vom da o formulă pentru evaluarea erorii ı̂n acest calcul:

L− 2π

an
<

2π

bn
− 2π

an
< 2π(an − bn)

şi conform relaţiei (∗) din propoziţia 2.2.1,

L− 2π

an
< 16π ·

(√
2− 1

8

)2n

,∀n ∈ N.

Dacă, de exemplu, vrem să calculăm lungimea lemniscatei cu trei zecimale
exacte rezolvăm inegalitatea

16π ·

(√
2− 1

8

)2n

< 10−3.

Pentru n = 2 obţinem 16π ·
(√

2−1
8

)22

= 0.000361... < 10−3. Rezultă că

2π

a2

va da primele trei zecimale exacte ale lungimii lemniscatei lui Bernoulli.

Obţinem:
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a1 = 1.207106781186547...
b1 = 1.189207115002721...
a2 = 1.198156948094634...
b2 = 1.198123521493120...
a3 = 1.198140234793877...
b3 = 1.198140234677307...

şi deci

2π

a0

= 4.442882938158366...

2π

b0

= 6.283185307179586...

2π

a1

= 5.205161138274292...

2π

b1

= 5.283508001182123...

2π

a2

= 5.244041957250595...

2π

b2

= 5.244188261448521...

2π

a3

= 5.244115108329133...

2π

b3

= 5.244115108839346...

Observăm că 5.244 este o aproximare cu trei zecimale exacte a lungimii
lemniscatei; ı̂n plus rezultă că pentru n = 3 se obţine o aproximare a lungimii
lemniscatei cu 9 zecimale exacte. Această creştere rapidă a exactităţii se da-
torează vitezei de convergenţă a lgoritmului mediilor aritmetico-geometrice.

Perimetrul elipsei

Încă de pe vremea lui Kepler şi Euler s-a ı̂ncercat găsirea unei formule pentru
calculul lungimii elipsei. În 1602, Kepler afirma că orbita lui Marte este un
oval. Mai târziu a descoperit că, de fapt, era o elipsă cu Soarele ı̂ntr-unul
din focare (Kepler a fost cel care a introdus cuvântul “focar” ı̂n 1609). Deci,
motivul iniţial pentru găsirea unei aproximări pentru perimetrul elipsei a fost
dorinţa de a calcula cu acurateţe orbitele eliptice ale planetelor.

Nu există o formulă pentru lungimea elipsei care să utilizeze funcţiile
elementare; dacă ı̂n cazul lemniscatei, lungimea se exprima cu o integrală
eliptică de prima specie, lungimea elipsei se exprimă cu o integrală eliptică
de specia a doua.

Elipsa poate fi caracterizată ca fiind locul geometric al punctelor din plan
pentru care suma distanţelor la două puncte fixe este constantă.

Ecuaţia implicită a elipsei este:

x2

a2
+
y2

b2
− 1 = 0.
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Elipsa poate fi dată şi prin ecuaţii parametrice:{
x = a cos t,
y = b sin t

, t ∈ [0, 2π]

şi atunci, printr-un calcul elementar, obţinem că perimetrul elipsei, L, este:

L = L(a, b) =

∫ 2π

0

√
[x′(t)]2 + [y′(t)]2 dt =

∫ 2π

0

√
a2 sin2 t+ b2 cos2 t dt =

= 4 ·
∫ π

2

0

√
a2 sin2 t+ b2 cos2 t dt = 4 ·

∫ π
2

0

√
a2 cos2 t+ b2 sin2 t dt =

= 4a ·
∫ π

2

0

√
1− a2 − b2

a2
sin2 t dt = 4a · E(x), unde x2 =

a2 − b2

a2
.

În relaţia de mai sus am presupus că a ≥ b > 0 iar E(x) este integrala eliptică
completă de specia a doua (vezi definiţia 2.3.1).

După cum ne-am fi aşteptat, primul impuls ı̂n ceea ce priveşte găsirea
unor metode pentru calculul perimetrului elipsei provine din astronomie. În
1609, Kepler a oferit o primă aproximare : L ≈ π(a + b) şi L ≈ 2π

√
ab

deşi argumentele sale nu erau foarte riguroase, iar 2π
√
ab era doar o limită

inferioară a lui L. Kepler a observat că elipsa cu semiaxele a şi b şi cercul de
rază

√
ab au aceeaşi arie. Cum cercul are o circumferinţă mai mică, rezultă

că L ≥ 2π
√
ab. În plus, Kepler remarcă faptul că (a + b) ≥ 2

√
ab şi atunci

afirmă că:

L = π(a+ b)

Kepler pare să folosească curiosul principiu potrivit căruia două cantităţi mai
mari decât un acelaşi număr sunt aproape egale.

Aproximări ale lui L sunt numeroase ı̂n literatura matematică, ele de-
pinzând de valorile lui a şi b şi fiind cu tât mai precise cu cât excentricitatea
elipsei, x =

√
a2−b2
a

, este mai mică.

În cele ce urmează vom prezenta o metodă de aproximare a perimetrului
elipselor pentru care semiaxele sunt legate de relaţia: a =

√
2 · b. În această

situaţie x = 1√
2

iar perimetrul este:

L = 4a · E
(

1√
2

)
.
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Folosind forma redusă a formulei lui Legendre (vezi observaţia 2.3.3), obţi-
nem:

L = 2a ·K
(

1√
2

)
+

πa

K( 1√
2
)
.

Deoarece

K

(
1√
2

)
=

π√
2 ·M(

√
2, 1)

,

L =
√

2a ·
[

π

M(
√

2, 1)
+M(

√
2, 1)

]
.

Să presupunem, pentru simplificare, că a =
√

2; utilizând iarăşi şirurile
algoritmului mediilor aritmetico-geometrice (an)n∈N şi (bn)n∈N pentru care
a0 =

√
2 şi b0 = 1. Atunci

2

(
bn +

π

an

)
↑ L ↓ 2

(
an +

π

bn

)
şi deci obţinem

L− 2

(
bn +

π

an

)
< 16(1 + π)

(√
2− 1

8

)2n

, ∀n ∈ N.

Pentru n = 2 vom obţine perimetrul elipsei cu trei zecimale exacte:
L = 7.640.... Pentru n = 3 se determină primele 8 zecimale exacte:
L = 7.64039557....

Bibliografie

[AB] Almkvist, G., Berndt, B. - Gauss,Landen, Ramanujan, the Arithmetic-
Geometric Mean, Ellipses and the Ladies Diary , Amer. Math. Monthly,
95(1988), pag. 585-608.
[BB] Borwein, J.M., Borwein, P.B. - The arithmetic-geometric mean and fast
computation of elementary functions , SIAM Review, 26(1984), pag 351-366.
[Ca] Carlson, B.C. - Algorithms involving arithmetic and geometric means ,
Amer. Math. Monthly, 78(1971), pag 496-505.
[Gh] Ghelfond, A.O. - Calculul cu diferenţe finite , Ed. Tehnică, Bucureşti,
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Capitolul 3

Elemente de analiză
asimptotică

Analiza asimptotică este o ramură importantă a analizei matematice. Studiul
comportării la limită a unor obiecte matematice complicate (funcţii definite
prin integrale cu parametri, soluţii ale unor ecuaţii diferenţiale etc) nece-
sită unele metode şi tehnici speciale. Una dintre aceste metode, iniţiată de
Laplace, utilizează faptul că studiul comportării la infinit al unei funcţii de
tipul

f(t) =

∫ β

α

Φ(t, x)dx

se poate face studiind maximul maxx Φ(t, x) şi apoi integrând funcţia Φ nu-
mai pe o vecinătate a punctului unde maximul este atins. Această integrare
se poate face aproximând funcţia Φ prin funcţii mai simple. Rezultatul este
de obicei o dezvoltare asimptotică a funcţiei f . Deşi metoda utilizează această
tehnică generală, aplicarea ei practică se face ı̂n mod diferit de la caz la caz.

În primul paragraf se amintesc definiţiile simbolurilor O şi o ale lui Landau
şi se dau mai multe exemple care să faciliteze ı̂nţelegerea corectă a lucrului
cu acestea.

Se definesc şirurile asimptotice şi apoi se defineşte, după Poincaré, dez-
voltarea asimptotică a unei funcţii. Se dau mai multe exemple de serii
asimptotice care nu converg la funcţia din a cărei dezvoltare provin sau care
reprezintă dezvoltări ale unor funcţii diferite. În finalul paragrafului se stu-
diază operaţii cu dezvoltări asimptotice.

Al doilea paragraf este dedicat studiului aproximărilor asimptotice ale
diverselor integrale cu parametru.

73
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Se prezintă metoda lui Laplace de dezvoltare, insistându-se asupra impor-
tanţei găsirii unor dezvoltări asimptotice divergente. Se evaluează integralele
de tipul

∫∞
−∞ e

−tx2xkdx, integrale utile ı̂n dezvoltările asimptotice ulterioare.
Se prezintă lema lui Watson şi se dau exemple de comportări asimptotice.
Unul dintre exemplele reluate ı̂n diverse moduri şi cazuri particulare vizează
obţinerea de condiţii pentru dezvoltarea asimptotică a integralelor de tipul∫ β

α

g(x)et·h(x)dx.

O importanţă aparte o are prezentarea comportării asimptotice la infinit a
funcţiei Γ (formula lui Stirling) comportare studiată ı̂n ultimul paragraf al
capitolului.

3.1 Şiruri şi serii asimptotice

Simbolul O

3.1.1 Definiţie. Fie f şi ϕ două funcţii definite pe o mulţime oarecare
A ⊆ R. Spunem că f = O(ϕ) (x ∈ A) dacă ∃M > 0 astfel ı̂ncât
|f(x)| < M · |ϕ(x)| , pentru ∀x ∈ A. Relaţia se citeşte: “f este de ordinul o
mare a lui ϕ pe mulţimea A”.
Dacă ϕ(x) 6= 0, ∀x ∈ A , atunci condiţia de mai sus este echivalentă cu

mărginirea funcţiei
f

ϕ
pe mulţimea A.

3.1.2 Exemple.
1. x2 = O(x) (|x| < 2)
2. sinx = O(1) (x ∈ R)
3. sinx = O(x) (x ∈ R)

De multe ori ne interesează să comparăm f cu ϕ doar ı̂ntr-o porţiune a
mulţimii A, ı̂n special unde informaţia nu este trivială. De exemplu formula
sinx = O(x) (x ∈ R) ne interesează doar pentru valori mici ale lui |x|.

3.1.3 Definiţie. Fie f şi ϕ două funcţii definite pe mulţimea A şi fie x0

un punct de acumulare pentru A. Spunem că f = O(ϕ) (x → x0 ), dacă
există o constantă pozitivă M şi o vecinătate V a punctului x0 astfel ı̂ncât
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|f(x)| ≤ M · |ϕ(x)| pentru x ∈ V ∩ A \ {x0}. Relaţia se citeşte: “f este de
ordinul o mare a lui ϕ când x→ x0”.

Altfel spus f = O(ϕ) (x → x0 ) dacă există o vecinătate V a punctului
x0 aşa fel ı̂ncât f = O(ϕ)(x ∈ V ∩ A \ {x0}).

În continuare vom considera de multe ori pe x0 = 0 sau ∞ , deoarece
aceste cazuri apar de cele mai multe ori ı̂n aplicaţii; orice x0 poate fi trans-

format ı̂n 0 sau ∞ , prin schimbarea de variabilă ξ = x− x0 sau ξ =
1

x− x0

.

Astfel, aplicând definiţia de mai sus pentru x0 = +∞ obţinem: f = O(ϕ)
(x→∞ ) dacă există numerele reale M şi a astfel ı̂ncât
|f(x)| ≤M · |ϕ(x)| pentru x ∈ A, a < x.

3.1.4 Exemple.
1. x2 = O(x) (x→ 0)
2. e−x = O(1) (x→∞)
3. (lnx)−x = O(1) (x→∞ )
4. x = O(x2) (x→∞).

Să studiem câteva formule ce implică simbolul O.
Formula O(x) + O(x2) = O(x) (x → 0) se interpretează astfel: ∀f şi g

două funcţii astfel ı̂ncât f(x) = O(x) (x → 0) şi g(x) = O(x2) (x → 0) are
loc f(x) + g(x) = O(x) (x→ 0).
În mod analog se interpretează formulele: O(x) + O(x2) = O(x2) (x → ∞),
eO(1) = O(1) (−∞ < x <∞)

Formula e−x = 1 + x + O(x2) (x → 0) implică existenţa unei funcţii f
astfel ı̂ncât f(x) = O(x2) (x→ 0) şi e−x = 1 + x+ f(x).

Formula x−1O(1) = O(1)+O(x−2) (x > 0) se interpretează astfel : pentru
orice funcţie f cu f(x) = O(1) (x > 0) există două funcţii g şi h, g(x) = O(1)
şi h(x) = O(x−2) ( 0 < x <∞) astfel ı̂ncât x−1f(x) = g(x) + h(x) .
Justificarea este simplă:
Considerăm g(x) = 0 şi h(x) = x−1f(x) dacă 0 < x ≤ 1 şi g(x) = x−1f(x) şi
h(x) = 0 dacă x > 1.

Este evident că semnul “=” este nepotrivit pentru astfel de relaţii deoa-
rece sugerează simetrie şi aici formulele nu sunt simetrice.

De exemplu, formula O(x) = O(x2) (x→∞ ) este corectă, dar O(x2) =
O(x) (x→∞) este falsă.

Fie ϕ şi ψ două funcţii astfel ı̂ncât ϕ = O(ψ) (x→∞ ) este adevărată şi
ψ = O(ϕ) (x→∞ ) este falsă. Dacă o a treia funcţie f satisface
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(1) f = O(ϕ) (x→∞)
atunci evident satisface
(2) f = O(ψ) (x→∞).

Formula (1) este o rafinare a formulei (2). Spunem că o formulă este cea
mai bună posibil dacă nu mai poate fi rafinată, adică dacă există două
constante pozitive M şi m astfel ı̂ncât m |ϕ(x)| ≤ |f(x)| ≤ M |ϕ(x)| pentru
un x suficient de mare. Acest fapt este echivalent cu a spune că f = O(ϕ)
(x→∞) şi că ϕ = O(f)(x→∞).
De exemplu, formula 2x + x · sinx = O(x) (x → ∞ ) este cea mai bună
posibil, deoarece x < 2 · x+ x · sinx < 3 · x.

Dacă m este un ı̂ntreg pozitiv, atunci estimarea
(3) e−x = O(x−m) (x→∞) este adevărată. Dar (3) nu este cea mai bună

posibil pentru nici o valoare a lui m, deoarece e−x = O(x−m−1) (x → ∞ )
este ı̂ntotdeauna o rafinare.

Vom discuta acum problema uniformităţii. Începem cu un exemplu.
Fie f şi g două funcţii definite pe o mulţime A şi m un număr pozitiv.

Atunci este adevărată formula:
(4) (f + g)m = O(fm) +O(gm) (x ∈ A)
Justificarea este simplă.
|(f(x) + g(x))m| ≤ (|f(x)|+ |g(x)|)m ≤ {2 ·max(|f(x)| , |g(x)|}m ≤

≤ 2m ·max(|f(x)|m , |g(x)|m) ≤ 2m · (|f(x)|m + |g(x)|m).
Din formula (4) rezultă că există două constante M şi N astfel ı̂ncât
|(f(x) + g(x))m| ≤M · |f(x)|m +N · |g(x)|m (x ∈ A).

Observăm că M şi N depind de m.
Pe de altă parte, ı̂n formula

(5)

(
m

x2 +m2

)m
= O

(
1

xm

)
(1 < x <∞ )

putem găsi o constantă independentă de m (0 < m <∞ ): x2 +m2 ≥ 2·m·x,

deci

(
m

x2 +m2

)m
≤ 1

(2 · x)m
.

Deoarece 2−m < 1 pentru orice m > 0, rezultă că există un număr pozitiv
M, independent de m (de exemplu M =1) astfel ı̂ncât(

m

x2 +m2

)m
≤ M

xm
(1 < x <∞, m > 0 ).

Putem exprima acest rezultat spunând că (5) este verificată uniform relativ
la m. Putem să analizăm formula (5) dintr-un alt punct de vedere. Funcţia
mm(x2 + m2)−m este o funcţie de două variabile x şi m şi de aceea poate fi
considerată ca o funcţie de un punct variabil ı̂n planul (x,m). Uniformitatea
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formulei (5) se poate exprima şi astfel(
m

x2 +m2

)m
= O

(
1

xm

)
(1 < x <∞, 0 < m <∞ ).

Pentru această formulă, mulţimea A specificată ı̂n definiţia 3.1.1 este porţi-
unea planului descrisă de 1 < x <∞ , 0 < m <∞.

În formulele ce implică simbolul O pentru ( x → ∞ ), există două con-
stante implicate (M şi a ı̂n definiţia 3.1.3). Vom vorbi de uniformitate ı̂n
raport cu un parametru m doar dacă ambele constante M şi a pot fi alese
independent de m.

Să studiem următorul exemplu:
Pentru fiecare m, m > 0 este adevărată formula
m2(1 +m · x2)−1 = O(x−1) (x→∞ ).

Dar aceasta formulă nu este adevărată uniform. Dacă ar fi aşa atunci ar
exista două numere pozitive M şi a, ambele independente de m, astfel ı̂ncât

m2(1 +m · x2)−1 < M · x−1 (x > a , m > 0).
Dacă considerăm m = x2 , obţinem M · (1 + x4) > x5 pentru x > a , ceea
este imposibil.
Pe de altă parte, una din cele două constante poate fi aleasă independent de
m. Putem considera a=m şi M=1 deoarece

m2(1 +m · x2)−1 < m · x−2 < 1 · x−1 (x > m, m > 0 ).
Putem considera de asemenea a = 1 şi M=m deoarece m2(1 + m · x2)−1 <
m · x−2 < m · x−1 (x > 1 ,m > 0 ).

Simbolul o

3.1.5 Definiţie. Fie f şi ϕ două funcţii definite pe o mulţime oarecare A.
Spunem că f = o(ϕ) (x → x0) (se citeşte: “f este de ordinul o mic a lui ϕ
când x → x0”), dacă ∀ε > 0 , există δ > 0 astfel ı̂ncât |f(x)| ≤ ε · |ϕ(x)|
pentru 0 < |x− x0| < δ, x ∈ A.
Dacă ϕ(x) 6= 0 ı̂ntr-o vecinătate a lui x0 (exceptând x0), f = o(ϕ)(x → x0)

este echivalentă cu lim
x→x0

f(x)

ϕ(x)
→ 0.

Dacă f = o(ϕ) (x → x0) atunci f = O(ϕ)(x → x0 ) deoarece convergenţa
implică mărginirea.

3.1.6 Exemple.
1. cosx = 1 + o(x) (x→ 0)
2. eo(x) = 1 + o(x) (x→ 0)
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3. o(f(x) · g(x)) = o(f(x)) ·O(g(x)) (x→ 0)
4. o(f(x) · g(x)) = f(x) · o(g(x)) (x→ 0).

Se pot face numeroase operaţii cu formule ce implică simbolurile O şi o.
Ca un exemplu să presupunem fn = O(gn) pentru n=1,2,3,... , N.

Atunci
N∑
n=1

an · fn(x) = O

(
N∑
n=1

|an| · |gn(x)|
)

, unde an sunt constante reale.

Justificarea este următoarea:
Deoarece fn = O(gn) , există prin definiţie o constantă reală pozitivă An
astfel ı̂ncât |fn(x)| ≤ An · |gn(x)| . Fie A = maxAn , n=1,2,3 ,N. Atunci∣∣∣∣ N∑

n=1

an · fn(x)

∣∣∣∣ < N∑
n=1

|an · fn(x)| ≤
N∑
n=1

|an| · |fn(x)| ≤ A ·
N∑
n=1

|an| · |gn(x)|

care implică relaţia de mai sus.
Alte rezultate a căror justificare o propunem:
1. Dacă f = O(g) atunci |f(x)|α = O(|g(x)|α) pentru α > 0 .

2. Dacă fi = O(gi) , i=1,2,3 , n şi |gi(x)| ≤ |g(x)| , atunci
n∑
i=1

ai · fi(x) =

O(g(x)) unde ai , i=1,2,.. , n sunt constante.
3. fi = O(gi) , i=1,2,3, , n atunci

∏n
i=1 fi(x) = O(

∏n
i=1 gi(x)) .

Dacă ı̂n formulele de mai sus simbolul O este ı̂nlocuit de simbolul o,
formulele rămân adevărate.

Relaţiile cu ordine pot fi integrate dar nu pot fi ı̂n general derivate. Dacă
o funcţie f este o funcţie de două variabile x şi y şi f = O(g) (x → x0 )
atunci de obicei (dar nu ı̂ntotdeauna)

∂f(x, y)

∂y
= O

(
∂g(x, y)

∂y

)
(x → x0). Cu toate că anumite rezultate

sigure pot fi date pentru diferenţiere, ı̂n practică fiecare caz este mai bine să
fie considerat separat.

3.1.7 Definiţie. Spunem că o funcţie f este asimptotic echivalentă sau
asimptotic egală cu o funcţie g şi scriem f (x) ∼ g(x) (x → x0 ) dacă

limx→x0
f(x)

g(x)
= 1. Relaţia f (x) ∼ g(x) poate fi scrisă ı̂n mod echivalent

f(x) = g(x)(1 + o(1))(x→ x0), f = g + o(g)(x→ x0) sau f(x) = eo(1)g(x).

Exemple:
1. x+ 1 ∼ x (x→∞).
2. x2 + x lnx ∼ x2 (x→∞).
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3. x2 + x lnx ∼ x lnx (x→ 0).
4. chx ∼ 1 (x→ 0).
5. chx ∼ 1

2
ex (x→∞).

6. n! ∼ e−nn−n
√

2πn (n→∞).
A determina “comportarea asimptotică” a unei funcţii date f când x→

x0 ı̂nseamnă a determina o funcţie simplă g care este asimptotic echivalentă
cu f . Aici simplă ı̂nseamnă că evaluarea sa explicită nu este dificilă dacă x
este foarte mare.

Serii asimptotice

3.1.8 Definiţie. O funcţie f este dezvoltabilă ı̂n serie de puteri ı̂n jurul
punctului x0 dacă există r > 0 aşa fel ı̂ncât f(x) =

∑∞
0 an(x− x0)n, oricare

ar fi x cu |x− x0| < r.

f este dezvoltabilă la infinit dacă există R > 0 aşa fel ı̂ncât f(x) =
∑∞

0

an
xn

,

oricare ar fi x cu |x| > R.

Fie (Sn(x)) şirul sumelor parţiale a uneia dintre seriile de mai sus. Deci

Sn(x) =
n∑

m=0

am(x − x0)m sau Sn(x) =
n∑

m=0

am
xm

; atunci |f(x)− Sn(x)| → 0

pentru (n→∞) . Astfel când n creşte, Sn(x) reprezintă o aproximare cu un
grad din ce ı̂n ce mai mare de acurateţe a lui f.

Dacă f nu este dezvoltabilă ı̂n serie de puteri ı̂n jurul punctului ı̂n discuţie,
putem descrie totuşi comportarea sa prin sumele parţiale Sn(x) ale unei serii
aproximative diferite numită dezvoltare asimptotică. Astfel de serii nu sunt
de obicei convergente dar cu toate acestea |f(x)− sn(x)| → 0 pentru un n
fixat şi pentru x tinzând la x0 sau la ∞.

3.1.9 Definiţie. Un şir de funcţii reale, definite pe o mulţime A, (fn)n∈N∗ ,
este un şir asimptotic pentru x → x0 (x0 punct de acumulare pentru A),
dacă:

1. limx→x0 fn(x) = 0,∀n ∈ N∗,
2. ∀n ∈ N∗,∃V -vecinătate pentru x0 a.̂ı. fn(x) 6= 0,∀x ∈ V ∩ A \ {x0},
3. fn+1 = o(fn)(x→ x0),∀n ∈ N∗.

Deci (fn)n este şir asimptotic dacă şi numai dacă limx→x0
fn+1(x)

fn(x)
= 0,∀n ∈

N∗; aici se sub̂ınţelege că fn(x) nu se anulează ı̂ntr-o vecinătate a lui x0

(exceptând eventual punctul x0) şi că limx→x0 fn(x) = 0,∀n ∈ N∗.
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3.1.10 Observaţie. Dacă şirul (fn) este un şir asimptotic pentru x → x0

atunci, ∀n ∈ N, O(fn+1) = o(fn)(x→ x0).

Exemple de şiruri asimptotice:
1. {(x− x0)n} pentru x→ x0.
2. {(lnx)−n} pentru x→∞.
3. {e−xx−an} pentru x → ∞ , unde (an) este un şir de numere reale cu

an+1 > an,∀n ∈ N.

3.1.11 Teoremă. Fie (fn)n≥1 un şir asimptotic pentru x→ x0 şi (an)n≥1 ⊆
R un şir cu primul termen, a1, nenul; următoarele afirmaţii sunt echivalente:

(i) f(x) =
∑N

n=1 anfn(x) + o(fN(x))(x→ x0) ,∀N ∈ N∗

(ii) f(x) =
∑N

n=1 anfn(x) +O(fN+1(x))(x→ x0) ,∀N ∈ N∗.
Oricare dintre aceste condiţii echivalente antrenează:

(iii) f(x) ∼
∑N

n=1 anfn(x)(x→ x0) ,∀N ∈ N∗.

Demonstraţie. (i) ⇒ (ii):
Din (1), f(x) =

∑N−1
n=1 anfn(x) + aNfN(x) + o(fN(x)). Rezultă că există

g(x) = o(fN(x)) aşa fel ı̂ncât f(x) =
∑N−1

n=1 an ·fn(x)+aN ·fN(x)+g(x). Din
g(x) = o(fN(x)), există δ > 0 aşa fel ı̂ncât, pentru orice x cu |x − x0| < δ,
|g(x)| < |fN(x)|. Fie atunci M = |aN | + 1; pentru orice x cu |x − x0| <
δ, |f(x)−

∑N−1
n=1 anfn(x)| ≤ |aN | · |fN(x)|+ |fN(x)| = M · |fN(x)|. Astfel am

demonstrat că f(x)−
∑N−1

n=1 anfn(x) = O(fN(x))(x→ x0),∀N ≥ 2.
(ii) ⇒ (i):
Fie N ∈ N∗ arbitrar; există M > 0 şi δ0 > 0 aşa fel ı̂ncât, pentru orice x

cu |x− x0| < δ0, ∣∣∣∣∣f(x)−
N∑
n=1

anfn(x)

∣∣∣∣∣ ≤M · |fN+1(x)|.

Deoarece limx→x0
fN+1(x)

fN(x)
= 0, ∀ε > 0,∃δ a.̂ı. 0 < δ < δ0 şi ∀x cu

0 < |x− x0| < δ,

∣∣∣∣fN+1(x)

fN(x)

∣∣∣∣ < ε

M
. Atunci

∣∣∣∣∣f(x)−
N∑
n=1

anfn(x)

∣∣∣∣∣ ≤M ·
∣∣∣∣fN+1(x)

fN(x)

∣∣∣∣ · |fN(x)| < ε · |fN(x)|
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şi deci f(x) =
∑N

n=1 anfn(x) + o(fN(x))(x→ x0),∀N ∈ N∗.
Să arătăm acum că (ii) ⇒ (iii):
Fie N ∈ N∗ arbitrar; există M > 0 şi δ0 > 0 aşa fel ı̂ncât, pentru orice x

cu |x− x0| < δ0,

(1)

∣∣∣∣∣f(x)−
N∑
n=1

anfn(x)

∣∣∣∣∣ ≤M · |fN+1(x)|.

Fie ε > 0 arbitrar aşa fel ı̂ncât ε ·
∑N

n=2 |an| < M şi fie

(2) ε1 =
ε|a1|
2M

> 0.

Deoarece limx→x0
fn(x)

f1(x)
= 0,∀n = 2, ..., N + 1, ∃δ ∈ (0, δ0) aşa fel ı̂ncât,

oricare ar fi x cu |x− x0| < δ,

(3)

∣∣∣∣fn(x)

f1(x)

∣∣∣∣ < ε1,∀n = 2, ..., N + 1.

Din (1), (2) şi (3) obţinem, pentru orice x cu |x− x0| < δ,:∣∣∣∣∣ f(x)∑N
n=1 anfn(x)

− 1

∣∣∣∣∣ =
|f(x)−

∑N
n=1 anfn(x)|

|f1(x)| ·
∣∣∣a1 +

∑N
n=2 an

fn(x)
f1(x)

∣∣∣ ≤

≤ M · |fN+1(x)|

|f1(x)| ·
(
|a1| − |

∑N
n=2 an

fn(x)
f1(x)
|
) ≤M ·

∣∣∣fN+1(x)

f1(x)

∣∣∣
|a1| − ε1

∑N
n=2 |an|

<

< M · ε1

|a1| − ε|a1|
2M
·
∑N

n=2 |an|
< M · ε1

|a1| − |a1|2

=
2M

|a1|
· ε1 = ε,

ceea ce ı̂nseamnă că

lim
x→x0

f(x)∑N
n=1 anfn(x)

= 1

şi deci că

f(x) ∼
N∑
n=1

anfn(x)(x→ x0).
�
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3.1.12 Definiţie. Fie (fn)n un şir asimptotic pentru x → x0; spunem
că seria

∑∞
n=1 anfn(x) este o dezvoltare asimptotică sau o aproximare

asimptotică a lui f(x) când x→ x0 dacă este verificată una dintre condiţiile
echivalente (i) sau (ii) din teorema precedentă.

Aceasta definiţie a fost dată de Poincaré ı̂n 1886.
În continuare vom nota cu f(x) ≈

∑∞
n=1 anfn(x)(x→ x0) situaţia ı̂n care

seria
∑∞

n=1 anfn(x) este dezvoltare asimptotică sau aproximare asimptotică
a lui f(x) când x→ x0.

3.1.13 Observaţii.
(i) Vom remarca că, dacă f(x) ≈

∑∞
n=1 anfn(x)(x → x0), atunci f(x) =

a1f1(x) + o(f1(x)) şi de aici rezultă că există limx→x0 f(x) = 0.
Dacă limx→x0 f(x) = a0 ∈ R şi f(x) − a0 ≈

∑∞
n=1 anfn(x)(x → x0)

atunci vom conveni să spunem că f(x) ≈
∑∞

n=0 anfn(x)(x→ x0) unde notăm
f0(x) = 1, ∀x ∈ A.

(ii) Dacă pentru funcţia f există o dezvoltare asimptotică cu şirul asimp-
totic dat (fn(x)) , atunci ea este unică, an fiind unic determinaţi de relaţiile
următoare.

a0 = limx→x0 f(x)

a1 = limx→x0
f(x)

f1(x)

a2 = limx→x0
f(x)− a1f1(x)

f2(x)
...................

aN = limx→x0

{
f(x)−

∑N−1
n=1 anfn(x)

fN(x)

}
...................
Într-adevăr, din condiţia (i) a teoremei 3.1.11, ∀N ∈ N∗, ∀ε > 0, ∃δ > 0

a.̂ı. ∀x cu 0 < |x− x0| < δ,∣∣∣∣∣f(x)−
N∑
1

anfn(x)

∣∣∣∣∣ < ε · fN(x) sau, echivalent,

∣∣∣∣∣f(x)−
∑N−1

1 anfn(x)

fN(x)
− aN

∣∣∣∣∣ < ε.

Rezultă că o funcţie admite o dezvoltare unică ı̂n serie asimptotică ı̂n raport
cu un şir asimptotic dat.
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(iii) Primul termen nenul ı̂n dezvoltarea asimptotică
∑∞

n=1 anfn(x) este
numit termenul dominant al dezvoltării şi dacă, de exemplu a1 6= 0 ,
scriem f(x) ∼ a0 + a1f1(x) (x→ x0).

(iv) Relaţia f(x) ≈
∑∞

n=0 anfn(x)(x → x0) nu implică faptul că seria∑∞
n=1 anfn(x) este convergentă. O dezvoltare asimptotică poate, desigur, să

fie convergentă; dacă e aşa, este de obicei mai puţin folositoare decât dacă
ar fi divergentă deoarece ı̂n cazul unei serii divergente, pentru fiecare x este
nevoie doar de câţiva termeni pentru a da o aproximare bună a funcţiei.

Clasa seriilor de puteri convergente este cea mai simplă clasă de serii
asimptotice.

Presupunem că f este suma unei serii de puteri: f(x) = a0+a1x+a2x
2+...

când |x| ≤ p , p fiind orice număr pozitiv, mai mic decât raza de convergenţă.
Atunci

f(x) ≈ a0 + a1x+ a2x
2 + ...(x→ 0).

Demonstraţia este simplă: ∀n ∈ N,∣∣∣∣∣f(x)−
n∑
k=0

akx
k

∣∣∣∣∣ =

∣∣∣∣∣
∞∑

k=n+1

akx
k

∣∣∣∣∣ ≤ |x|n+1 ·
∞∑

k=n+1

|ak| · |x|k−n−1

︸ ︷︷ ︸
g(x)

.

Deoarece limx→0 g(x) = |an+1|,∃δ > 0 a.̂ı., ∀x ∈ (−δ, δ), g(x) < |an+1| + 1 =
M . Atunci ∣∣∣∣∣f(x)−

n∑
k=0

akx
k

∣∣∣∣∣ ≤M · |x|n+1

şi deci f(x) =
∑n

k=1 akx
k +O(xn+1),∀n ∈ N. După punctul (ii) din teorema

3.1.11 aceasta ı̂nseamnă că

f(x) ≈
∞∑
n=0

anx
n(x→ 0).

Dacă o funcţie admite dezvoltare Taylor pe o vecinătate a lui x0 , atunci
seria Taylor este o dezvoltare asimptotică convergentă.

Exemplul următor prezintă o dezvoltare asimptotică mai interesantă.

3.1.14 Exemplu.
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Fie funcţia E : (0,+∞)→ R definită prin

E(t) =

∫ ∞
t

x−1e−xdx.

Să remarcăm că pentru t = 0, E(t) = Γ(0) = +∞ şi că limt→∞E(t) = 0,
deci a0 = 0.

Să găsim o dezvoltare asimptotică a lui E(t) pentru (t→∞) .
Integrând prin părţi obţinem:

E(t) =
[
− e−x

x

]∞
t
−
∞∫
t

e−xx−2dx = = e−t

t
+
[
e−x

x2

]∞
t

+ 2
∞∫
t

e−xx−3dx şi

repetând procedeul rezultă:

E(t) = e−t
{

1

t
− 1

t2
+

2!

t3
− 3!

t4
+ ....+

(−1)n−1(n− 1)!

tn

}
+

+(−1)nn!

∞∫
t

e−xx−(n+1)dx = sn(t) + rn(t)

unde sumele parţiale sn şi restul rn sunt:

sn(t) = e−t
{

1

t
− 1

t2
+

2!

t3
− 3!

t4
+ ....+

(−1)n−1(n− 1)!

tn

}
,

rn(t) = (−1)nn!

∫ ∞
t

e−xx−(n+1)dx.

Seria pentru care sn este suma parţială este divergentă pentru ∀t (fixat)

deoarece termenul general ı̂n modul,
(n− 1)!

tn
tinde la ∞ pentru n → ∞ .

Desigur rn(t) este de asemenea nemărginit pentru n → ∞ deoarece sn(t) +
rn(t) trebuie să fie mărginit, E(t) fiind mărginită; acest fapt este de asemenea
evident din definiţia lui rn(t). Să considerăm acum pe n fixat şi t suficient
de mare. Atunci:

|rn(t)| = n!

∫ ∞
t

e−xx−(n+1)dx <
n!

tn+1

∫ ∞
t

e−xdx =
n!

tn+1
e−t → 0(t→∞).

Mai mult, pentru n fixat raportul dintre rn(t) şi ultimul termen ı̂n sn(t)
este: ∣∣∣∣ rn(t)

(n− 1)!t−ne−t

∣∣∣∣ < n

t
→ 0 când t→∞
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deci, dacă notăm cu fn(t) = (−1)n(n−1)!
tn

,

E(t)− sn(t)

fn(t)
→ 0

ceea ce este echivalent cu E(t)− sn(t) = o(fn(t))(t→∞) şi deci cu

E(t) = sn(t) + o(fn(t))(t→∞),∀n ∈ N.

Ultima relaţie arată că

f(t) ≈
∞∑
n=1

(−1)n−1(n− 1)!

tn
· e−t(t→∞).

Folosind relaţia (iii) din teorema 3.1.11 obţinem

E(t) ∼ e−t
{

1

t
− 1

t2
+

2!

t3
− 3!

t4
+ ...+

(−1)n−1(n− 1)!

tn

}
(t→∞),∀n ∈ N.

Partea din dreapta este dezvoltarea asimptotică a lui E(t) pentru t→∞.
Problema care apare acum este cum să alegem n-ul optim astfel ı̂ncât

sn(t) să dea cea mai bună aproximare pentru E(t) pentru un t dat. Evident
pentru t suficient de mare primii termeni din sn vor descreşte; de exemplu
2!t−3 < t−2 . Totuşi, la o anumită valoare a lui n, să spunem N, termenii
cu n > N vor ı̂ncepe să crească succesiv pentru un t dat deoarece al n-
lea termen (−1)n (n− 1)!e−tt−n este nemărginit pentru n → ∞. În clasa
problemelor pentru care acesta este un exemplu, eroarea cu care se determină
sn este de ordinul primului termen neglijat, şi deci locul optim este pentru
n = N (desigur N depinde de t). Procedura practică pentru a calcula E(t)
pentru un t fixat este de a evalua termenii succesivi ı̂n sn(t) şi de a ne opri
când se obţine primul termen mai mare ca precedentul. Astfel vom afla
n-ul pentru care modulul raportului dintre al (n+1)-lea termen şi al n-lea
termen ı̂n sn este cel mai aproape de 1 (dar mai mic decât 1). Raportul este
n!e−tt−(n+1)

(n− 1)!e−tt−n
= nt−1 şi deci N = [t].

Convergenţa unei serii nu e necesară din punct de vedere computaţional,
decât dacă, desigur, converge foarte repede, deoarece convergenţa depinde
de al n-lea termen pentru n nedefinit de mare.

Ceea ce este mai de dorit este o aproximare care cere doar puţini termeni.
Aproximările asimptotice care dau serii divergente, ca ı̂n exemplul de mai sus,
sunt ı̂n mod considerabil mai folositoare din punct de vedere practic.
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Operaţii cu serii asimptotice

3.1.15 Propoziţie. Fie f, g : A → R, x0 ∈ A′ şi fn : A → R un şir
asimptotic pentru x→ x0; presupunem că:
f(x) ≈

∑∞
n=0 anfn(x)(x→ x0) şi

g(x) ≈
∑∞

n=0 bnfn(x)(x→ x0).
Atunci, ∀α, β ∈ R,

αf(x) + βg(x) ≈
∞∑
n=0

(αan + βbn)fn(x)(x→ x0).

Demonstraţie. ∀N ∈ N,

f(x) =
N∑
0

anfn(x) +O(fN+1(x))(x→ x0),

g(x) =
N∑
0

bnfn(x) +O(fN+1(x))(x→ x0).

Atunci

αf(x) + βg(x) =
N∑
0

(αan + βbn)fn(x) +O(fN+1(x))(x→ x0).

�

3.1.16 Observaţie. Produsul după Cauchy a două serii asimptotice nu este
obligatoriu o serie asimptotică. Într-adevăr, prin ı̂nmulţirea formală a celor
două serii se obţin termeni de forma anbmfn(x)fm(x) iar şirul (fnfm)n,m nu

poate fi aranjat, ı̂n caz general, ca un şir asimptotic. În cazul particular al

şirurilor asimptotice (xn)n≥1(x → 0) sau

(
1

xn

)
n≥1

(x → ∞) produsele de

mai sus se pot aranja ca şiruri asimptotice.

3.1.17 Propoziţie. Fie (an)n, (bn)n ⊆ R două şiruri arbitrare şi fie (cn)n ⊆
R şirul definit prin cn = a0bn + a1bn−1 + · · · anb0, ∀n ∈ N; presupunem că
f, g : A→ R.

1). Dacă 0 ∈ A′, f(x) ≈
∑∞

n=0 anx
n(x→ 0) şi g(x) ≈

∑∞
n=0 bnx

n(x→ 0)
atunci f(x) · g(x) ≈

∑∞
n=0 cnx

n(x→ 0).
2). Dacă +∞ ∈ A′, f(x) ≈

∑∞
n=0 anx

−n(x→∞) şi g(x) ≈
∑∞

n=0 bnx
−n

(x→∞) atunci f(x) · g(x) ≈
∑∞

n=0 cnx
−n(x→∞).
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Demonstraţie. 1). Din ipoteză, ∀N ∈ N,∃f1, g1 : A→ R,
f1(x) = O(xN+1)(x→ 0), g1(x) = O(xN+1)(x→ 0) a.̂ı.

f(x) =
N∑
0

anx
n + f1(x), g(x) =

N∑
0

bnx
n + g1(x).

Înmulţind cele două relaţii de mai sus obţinem

f(x) · g(x) =

(
N∑
0

anx
n

)
·

(
N∑
0

bnx
n

)
+

+

(
N∑
0

anx
n

)
· g1(x) +

(
N∑
0

bnx
n

)
· f1(x) + f1(x) · g1(x).

Se observă imediat că(
N∑
0

anx
n

)
·

(
N∑
0

bnx
n

)
=

N∑
0

cnx
n +O(xN+1)(x→ 0)

şi cum
∑N

0 anx
n şi

∑N
0 bnx

n sunt mărginite pe o vecinătate a lui 0,(
N∑
0

anx
n

)
· g1(x) = O(xN+1)(x→ 0),

(
N∑
0

bnx
n

)
· f1(x) = O(xN+1)(x→ 0).

Este evident că f1(x) · g1(x) = O(xN+1)(x→ 0) şi deci

f(x) · g(x) =
N∑
0

cnx
n +O(xN+1)(x→ 0),∀N ∈ N

ceea ce, după teorema 3.1.11 spune că

f(x) · g(x) ≈
∞∑
0

cnx
n(x→ 0).

Demonstraţia punctului 2). este asemănătoare.
�

Ne vom ocupa acum de integrarea şi derivarea dezvoltărilor asimptotice.
Din motive lesne de ı̂nţeles vom considera numai cazurile şirurilor asimptotice
(xn)n∈N∗(x→ 0) şi (x−n)n∈N∗(x→∞).
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3.1.18 Teoremă. Fie A un interval mărginit sau nemărginit şi f : A→ R
cu proprietatea că f ∈ R[c,d],∀[c, d] ⊆ A (f este integrabilă ı̂n sens Riemann
pe orice sub-interval al lui A).

1). Dacă 0 ∈ A′ şi dacă f(x) ≈
∑∞

0 anx
n(x → 0) atunci există o

vecinătate V a lui 0 a.̂ı. f ∈ R(0,x], ∀x ∈ V ∩ A \ {0} şi∫ x

0

f(t)dt ≈
∞∑
0

an
n+ 1

· xn+1(x→ 0).

2). Dacă ∞ ∈ A′ şi dacă f(x) ≈
∑∞

0 an · x−n(x → ∞) atunci există o

vecinătate V a lui +∞ a.̂ı. funcţia g : A → R, g(t) = f(t) − a0 −
a1

t
, este

integrabilă pe [x,+∞),∀x ∈ V ∩ A şi∫ ∞
x

[
f(t)− a0 −

a1

t

]
dt ≈

∞∑
n=1

an+1

n
· x−n(x→∞).

miDemonstraţie. În enunţul de mai sus R(0,x] (respectiv R[x,∞)) notează
clasa funcţiilor integrabile ı̂n sens generalizat pe (0, x] (respectiv pe [x,∞)),
adică a acelor funcţii pentru care există limy↓0

∫ x
y
f(t)dt ∈ R (respectiv există

limy↑∞
∫ y
x
f(t)dt ∈ R).

1). Deoarece f(x) ≈
∑∞

0 an · xn(x→ 0), f(x) = a0 + a1x+O(x2)(x→ 0)
deci ∃δ > 0,∃M > 0 a.̂ı. |f(x) − a0 − a1x| ≤ M · x2,∀x ∈ [−δ, δ] ∩ A \ {0}.
Deoarece

∫ δ
0
M · x2dx converge, f(x) − a0 − a1x ∈ R(0,δ] de unde f ∈ R(0,δ]

şi deci f ∈ R(0,x],∀x ∈ [−δ, δ] ∩ A.
Utilizând din nou ipoteza, ∀N ∈ N∗, ∃g(x) = O(xN+1)(x→ 0) şi există o

vecinătate V a lui 0 a.̂ı.

f(x) = a0 + a1x+ · · ·+ aNx
N + g(x),∀x ∈ V ∩ A \ {0}.

De aici rezultă că g ∈ R(0,x],∀x ∈ V şi dacă integrăm relaţia de mai sus∫ x

0

f(t)dt = a0x+
a1

2
x2 · · ·+ aN

N + 1
xN+1 +

∫ x

0

g(t)dt.

Deoarece |g(x)| ≤MxN+1,∀x ∈ V ∩ A \ {0},∣∣∣∣∫ x

0

g(t)dt

∣∣∣∣ ≤ M

N + 2
xN+2
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şi deci
∫ x

0
g(t)dt = O(xN+2)(x→ 0). Rezultă că, ∀N ∈ N,∫ x

0

f(t)dt =
N∑
k=0

ak
k + 1

xk+1 +O(xN+2)(x→ 0)

ceea ce arată că ∫ x

0

f(t)dt ≈
∞∑
n=0

an
n+ 1

xn+1(x→ 0).

2). Presupunem acum că +∞ ∈ A′ şi f(x) ≈
∑∞

0 anx
−n(x→∞); atunci

f(x) = a0 + a1
x

+O(x−2)(x→∞) şi deci ∃M > 0,∃δ > 0 a.̂ı.∣∣∣f(x)− a0 −
a1

x

∣∣∣ ≤ M

x2
, ∀x ∈ [δ,+∞)

Deoarece
∫∞
δ

M
x2
dx este convergentă rezultă că f(x)− a0 − a1

x
∈ R[δ,+∞) deci

f(t)− a0 − a1
t
∈ R[x,+∞),∀x ∈ [δ,+∞).

Acum, ∀N ∈ N∗,∃g(x) = O(x−(N+1))(x→∞) a.̂ı. f(x)− a0 − a1
x

=
= a2

x2
+ · · ·+ aN

xN
+ g(x).

Rezultă că g ∈ R[x,+∞),∀x ∈ [δ,+∞) şi dacă integrăm relaţia de mai sus∫ ∞
x

[
f(t)− a0 −

a1

t

]
dt =

a2

x
+ · · ·+ aN

N − 1
· 1

xN−1
+

∫ ∞
x

g(x)dx.

Deoarece g(x) = O(x−N−1)(x→∞), ∃M > 0, ∃δ1 > δ a.̂ı.

|g(x)| ≤M · x−N−1,∀x ∈ [δ1,+∞),

de unde ∣∣∣∣∫ ∞
x

g(t)dt

∣∣∣∣ ≤ M

N
· x−N , deci

∫ ∞
x

[
f(t)− a0 −

a1

t

]
dt =

N∑
k=2

ak
k − 1

· x−k+1 +O(x−N)(x→∞),∀N ≥ 2,

ceea ce arată că∫ ∞
x

[
f(t)− a0 −

a1

t

]
dt ≈

∞∑
n=2

an
n− 1

· x−n+1(x→∞) =

=
∞∑
n=1

an+1

n
· x−n(x→∞).

�
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3.1.19 Teoremă. Fie A un interval mărginit sau nemărginit şi f : A→ R
o funcţie derivabilă a.̂ı. f ′ ∈ R[c,d],∀[c, d] ⊆ A.

1). Dacă 0 ∈ A′, f ′(x) ≈
∑∞

n=0 bnx
n(x→ 0) şi dacă există

limx→0 f(x) = a0 ∈ R atunci

f(x) ≈ a0 +
∞∑
n=1

bn−1

n
· xn(x→ 0).

2). Dacă ∞ ∈ A′, f ′(x) ≈
∑∞

n=0 bnx
−n(x→∞) şi dacă există

limx→∞ f(x) = a0 ∈ R atunci b0 = b1 = 0 şi

f(x) ≈ a0 −
∞∑
n=1

bn+1

n
· x−n(x→∞).

Demonstraţie. 1). Funcţiei f ′ ı̂i putem aplica punctul 1) al teoremei
precedente; rezultă că există V , o vecinătate a lui 0, a.̂ı. f ′ ∈ R(0,x],∀x ∈
V ∩ A \ {0} şi ∫ x

0

f ′(t)dt ≈
∞∑
0

bn
n+ 1

· xn+1(x→ 0).

Dar
∫ x

0
f ′(t)dt = f(x)− limy→0 f(y) = f(x)− a0 şi deci

f(x) ≈ a0 +
∞∑
0

bn
n+ 1

· xn+1(x→ 0).

2). Aplicăm lui f ′ punctul 2) al teoremei precedente şi rezultă că există
o vecinătate V a lui +∞ a.̂ı. funcţia g : A → R, g(t) = f ′(t) − b0 − b1

t
, este

integrabilă pe [x,+∞),∀x ∈ V ∩ A şi∫ ∞
x

[
f ′ − b0 −

b1

t

]
dt ≈

∞∑
n=1

bn+1

n
· x−n(x→∞).

Însă integrala
∫∞
x
f ′(t)dt = limt→∞ f(t)− f(x) = a0 − f(x) este convergentă

şi, cum
∫∞
x
g(t)dt converge de asemenea, trebuie ca b0 = b1 = 0. Rezultă că

f(x) ≈ a0 −
∞∑
n=1

bn+1

n
· x−n(x→∞).

�
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3.2 Metoda lui Laplace pentru studiul com-

portării asimptotice a integralelor gene-

ralizate

Ne propunem să studiem comportarea asimptotică a unor integrale de tipul∫ β

α

f(t, x)dx (t→∞),

unde intervalul de integrare (α, β) poate fi mărginit sau nemărginit.
Ideea generală va fi aceea de a restrânge intervalul de integrare (α, β) la un

interval mic (ε, η) pe care funcţia f are valori maxime şi pe care comportarea
asimptotică, când t→∞, este aceeaşi ca pe (α, β). Avantajul restrângerii la
un interval mic este că, ı̂n asemenea situaţie, putem aproxima funcţia f prin
funcţii mai simple a căror integrală admite o comportare asimptotică relativ
uşor de studiat.

Vom aminti intâi unele proprietăţi ale funcţiei Γ a lui Euler, funcţie
definită prin următoarea integrală generalizată:

Γ(a) =

∫ +∞

0+0

xa−1 · e−xdx.

Integrala generalizată (sau improprie) mixtă
∫∞

0+0
este convergentă dacă in-

tegralele
∫ 1

0+0
şi
∫∞

1
sunt, amândouă, convergente.

Deoarece xa−1 · e−1 ≤ xa−1 · e−x ≤ xa−1,∀x ∈ (0, 1],
∫ 1

0+0
xa−1 · e−xdx are

aceeaşi natură cu
∫ 1

0+0
xa−1dx. Dar∫ 1

0+0

xa−1dx = lim
u↓0

∫ 1

u

xa−1dx =

{
limu↓0

(
1
a
· xa |1u

)
, a 6= 0,

limu↓0 (lnx |1u ) , a = 0
=

=

{
1
a

, a > 0,
+∞ , a ≤ 0.

Rezultă că
∫ 1

0+0
xa−1 · e−xdx converge dacă şi numai dacă a > 0.

Pentru a 2-a integrală observăm că xa−1 · e−x = O
(
e−

x
2

)
(x→ 0) şi, deoarece∫ +∞

1
e−

x
2 dx este convergentă, rezultă că

∫ +∞
1

xa−1 · e−xdx converge, ∀a ∈ R.
Rezultă că Γ : (0,+∞)→ R.
Propoziţia următoare aminteşte câteva dintre proprietăţile funcţiei Γ.
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3.2.1 Propoziţie.
1). Γ(a+ 1) = a · Γ(a), ∀a > 0.
2). Γ(n+ 1) = n!, ∀n ∈ N.

3). Γ

(
1

2

)
=

∫ +∞

−∞
e−x

2

dx =
√
π.

4). Γ

(
n+

1

2

)
=

(2n− 1)!!

2n
·
√
π, ∀n ∈ N, unde (2n−1)!! = 1·3·5 · · · (2n−1).

Demonstraţie.

1). Γ(a+ 1) =

∫ +∞

0+0

xa · e−xdx = −
∫ +∞

0+0

xa · (e−x)′dx = −xa · e−x
∣∣∣+∞
0+0

+

+ a ·
∫ +∞

0+0

xa−1 · e−xdx = a · Γ(a).

2). Γ(1) =
∫ +∞

0
e−xdx = 1 = 0!.

În continuare utilizăm relaţia de la punctul 1):
Γ(2) = 1 · Γ(1) = 1,
Γ(3) = 2 · Γ(2),
· · ·
Γ(n+ 1) = n · Γ(n).

Înmulţind relaţiile de mai sus obţinem rezultatul de la 2).

3). Γ

(
1

2

)
=

∫ +∞

0+0

1√
x
· e−xdx; facem schimbarea de variabilă x = y2 şi

obţinem Γ

(
1

2

)
=

∫ +∞

0+0

1

y
·e−y2 ·2ydy = 2·

∫ +∞

0

e−y
2

dy =

∫ +∞

−∞
e−y

2

dy =
√
π.

Ultima egalitate se poate demonstra ı̂n diverse moduri; propunem aici o
demonstraţie bazată pe formula de schimbare de variabilă la integrala dublă.

Fie I =

∫ +∞

−∞
e−x

2

dx; atunci I2 =

∫ +∞

−∞
e−x

2

dx ·
∫ +∞

−∞
e−y

2

dy =

=

∫∫
R2

e−(x2+y2)dxdy. În integrala dublă trecem la coordonate polare:{
x = u cos v,
y = u sin v

, u ≥ 0, v ∈ [0, 2π]. Jacobianul acestei transformări este

D(x, y)

D(u, v)
=

∣∣∣∣ x′u x′v
y′u y′v

∣∣∣∣ = u

şi deci

I2 =

∫∫
[0,+∞)×[0,2π]

e−u
2 · D(x, y)

D(u, v)
dudv =

∫ +∞

0

e−u
2 · udu ·

∫ 2π

0

dv =
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=

(
−1

2
· e−u2

∣∣∣+∞
0

)
· 2π = π,

de unde I =
√
π.

4). Γ

(
n+

1

2

)
= Γ

(
2n+ 1

2

)
=

2n− 1

2
· Γ
(

2n− 1

2

)
=

=
2n− 1

2
· 2n− 3

2
·Γ
(

2n− 3

2

)
= · · · = (2n− 1)(2n− 3) · · · 3 · 1

2n
·Γ
(

1

2

)
=

=
(2n− 1)!!

2n
·
√
π.

�

Proprietăţile funcţiei Γ prezentate ı̂n propoziţia anterioară permit calcu-
larea valorilor unor integrale ce vor interveni frecvent ı̂n cele urmează.

3.2.2 Propoziţie.

1).

∫ +∞

0

e−tx
2 · x2ndx =

√
π

2
· (2n− 1)!!

2n
· t−

2n+1
2 , ∀n ∈ N,∀t > 0, unde

(2n− 1)!! = 1 · 3 · 5 · · · (2n− 1) şi (−1)!! = 1.

2).

∫ +∞

0

e−tx
2 · x2n+1dx =

n!

2
· t−n−1, ∀n ∈ N, ∀t > 0.

3).

∫ +∞

0

e−tx · xndx = n! · t−n−1, ∀n ∈ N,∀t > 0.

Demonstraţie. 1). În integrala

∫ +∞

0

e−tx
2 · x2ndx facem schimbarea de

variabilă tx2 = y şi obţinem∫ +∞

0

e−tx
2 ·x2ndx =

∫ +∞

0

e−y ·yn ·t−n · 1√
t
· 1

2
√
y
dy =

1

2
·t−

2n+1
2 ·Γ

(
n+

1

2

)
=

=
1

2
· t−

2n+1
2 · (2n− 1)!!

2n
·
√
π.

2).

∫ +∞

0

e−tx
2 · x2n+1dx =

∫ +∞

0

e−y · y
2n+1

2 · t−
2n+1

2 · 1√
t
· 1

2
√
y
dy =

=
1

2
· t−n−1 · Γ(n+ 1) =

n!

2
· t−n−1.

3). Cu schimbarea de variabilă x = y2 obţinem

∫ +∞

0

e−tx · xndx =

= 2

∫ +∞

0

e−ty
2 · y2n+1dy = n!t−n−1.

�

Vom prezenta un exemplu prin care se va ilustra metoda lui Laplace.
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3.2.3 Exemplu. Să se studieze comportarea asimptotică când t → +∞ a
funcţiei definite prin integrala:

f(t) =

∫ +∞

−∞
e−tx

2 · ln (1 + x+ x2)dx.

Să observăm ı̂ntâi că, ∀t ∈ (−1, 1),

1

1 + t
= 1− t+ t2 − t3 + · · ·+ (−1)n+1tn + · · ·

Dacă integrăm relaţia precedentă pe [0, x] obţinem

(1) ln (1 + x) = x− x2

2
+
x3

3
− x4

4
+ · · ·+ (−1)n+1x

n

n
+ · · · , ∀x ∈ (−1, 1).

Folosim formula (1) pentru dezvoltarea lui ln(1+x+x2); pentru a o putea
aplica trebuie ca x+ x2 ∈ (−1, 1), ceea ce este echivalent cu

x ∈

(
−1−

√
5

2
,
−1 +

√
5

2

)
. Deoarece

[
−1

2
,
1

2

]
⊆

(
−1−

√
5

2
,
−1 +

√
5

2

)
,

obţinem

(2) ln(1 + x+ x2) = (x+ x2)− 1

2
(x+ x2)2 + · · ·+ (−1)n+1

n
(x+ x2)n + · · ·

sau, grupând termenii asemenea,

(3) ln(1 + x+ x2) = x+
1

2
x2 − 2

3
x3 +

1

4
x4 +

1

5
x5 − 2

6
x6 + · · ·

· · ·+ 1

3n− 2
x3n−2 +

1

3n− 1
x3n−1 − 2

3n
x3n + · · · ,∀x ∈

[
−1

2
,
1

2

]
.

Vom considera şirul (an)n≥1 definit prin

a3n−2 =
1

3n− 2
, a3n−1 =

1

3n− 1
, a3n = − 2

3n
, ∀n ≥ 1

şi atunci (3) se rescrie

(4) ln(1 + x+ x2) =
∞∑
n=1

anx
n,∀x ∈

[
−1

2
,
1

2

]
.
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Vom defini acum, pentru orice N ∈ N, funcţia RN : R→ R, prin
RN(x) = ln(1+x+x2)−

∑2N−1
n=1 anx

n,∀x ∈ R. Aplicăm funcţiei RN teorema
lui Lagrange pe intervalul [0, x]; fie c ∈ (0, x) a.̂ı. RN(x)−RN(0) = R′N(c) ·x
sau

(5) RN(x) = R′N(c) · x.
Dar R′N(x) = 2x+1

x2+x+1
−1−x+2x2−x3−x4 +2x5 + · · ·−(2N−1)a2N−1x

2N−2.
Aducând la acelaşi numitor şi reducând termenii asemenea obţinem:

R′N(x) = − 1

x2 + x+ 1

[
(2N − 2)a2N−2x

2N−1 + (2N − 1)a2N−1x
2N+

+ (2N − 1)a2N−1x
2N−1

]
.

Rezultă că |R′N(x)| < 4|x|2N−1 şi atunci, din (5),

(6) |RN(x)| < 4|x|2N .
Atunci

f(t) =

∫ ∞
−∞

e−tx
2

ln(1 + x+ x2)dx =

∫ ∞
−∞

[
2N−1∑
n=1

anx
n +RN(x)

]
e−tx

2

dx =

=
2N−1∑
n=1

an

∫ ∞
−∞

e−tx
2

xndx+

∫ ∞
−∞

e−tx
2

RN(x)dx.

Evaluăm ultimul termen din suma de mai sus folosind propoziţia 3.2.2:∣∣∣∣∫ ∞
−∞

e−tx
2

RN(x)dx

∣∣∣∣ ≤ 4

∫ ∞
−∞

e−tx
2

x2Ndx = 8

∫ ∞
0

e−tx
2

x2Ndx =

= 4
√
π

(2N − 1)!!

2N
· t−

2N+1
2 = O

(
t−(N+ 1

2
)
)
.

Observăm că
∫∞
−∞ e

−tx2xndx = 0, pentru orice n impar şi astfel, utilizând din
nou propoziţia 3.2.2,

f(t) =
N−1∑
n=1

√
π

(2n− 1)!!

2n
a2nt

−(n+ 1
2

) +O
(
t−(N+ 1

2
)
)
,∀N ∈ N.

Punctul (ii) al teoremei 3.1.11 ne arată că

f(t) ≈
∞∑
n=1

√
π

(2n− 1)!!

2n
a2nt

−(n+ 1
2

) (t→∞).

Vom prezenta, ı̂n cele ce urmează, comportarea asimptotică a câtorva
tipuri de integrale generalizate.
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Integrale de tipul
∫ +∞
−∞ eth(x)dx

3.2.4 Teoremă. Fie h : R→ R o funcţie cu proprietăţile:
1). h este continuă pe R,
2). h(x) < h(0) = 0,∀x ∈ R \ {0},
3). ∃b, c > 0 a.̂ı. h(x) ≤ −b,∀x ∈ R cu |x| ≥ c,
4). ∃h′′(0) < 0,
5).

∫ +∞
−∞ eh(x)dx este convergentă.

Atunci ∫ +∞

−∞
eth(x)dx ∼

√
2π

−th′′(0)
(t→∞).

mi Demonstraţie. Din condiţia 2), h admite un maxim absolut ı̂n
origine. Condiţia 4) ne asigură că h este derivabilă pe o vecinătate a originii;
atunci, din teorema lui Fermat, h′(0) = 0.

Definim funcţia ϕ : R→ R prin ϕ(x) = h(x)− 1
2
x2 · h′′(0),∀x ∈ R.

Se observă că ϕ(0) = ϕ′(0) = ϕ′′(0) = 0 de unde

0 = ϕ′′(0) = lim
x→0

ϕ′(x)− ϕ′(0)

x
= lim

x→0

ϕ′(x)

x
.

Fie ε > 0 a.̂ı. 2ε < −h′′(0); atunci există δ > 0 a.̂ı. ϕ să fie derivabilă pe
[−δ, δ] ⊆ R şi

(1) |ϕ′(x)| < ε · |x|,∀x ∈ R cu |x| ≤ δ.

Putem alege δ < c şi atunci, cum h este continuă pe compactul C = [−c,−δ]∪
[δ, c], există x0 ∈ C a.̂ı. h(x) ≤ h(x0),∀x ∈ C. Din condiţia 2), h(x0) < 0 şi
atunci, dacă notăm cu M = min{b,−h(x0} > 0, rezultă din 3)

(2) h(x) ≤ −M,∀x ∈ R cu |x| ≥ δ.

Fie x ∈ [−δ, δ]; aplicăm funcţiei ϕ teorema lui Lagrange pe intervalul [0, x].
Există deci un punct c ı̂ntre 0 şi x a.̂ı. ϕ(x) − ϕ(0) = ϕ′(c) · x, de unde,
folosind (1),

(3) |ϕ(x)| < ε · x2,∀x ∈ [−δ, δ].

Din (3) obţinem

(4)
1

2
· x2 · [h′′(0)− 2ε] < h(x) <

1

2
· x2 · [h′′(0) + 2ε],∀x ∈ [−δ, δ].
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Înmulţim inegalităţile (4) cu t > 0, exponenţiem, integrăm pe intervalul
[−δ, δ] şi obţinem:

(5)

∫ δ

−δ
e

1
2
tx2[h′′(0)−2ε]dx︸ ︷︷ ︸

I1

<

∫ δ

−δ
eth(x)dx <

∫ δ

−δ
e

1
2
tx2[h′′(0)+2ε]dx︸ ︷︷ ︸

I2

.

Folosind propoziţia 3.2.2 şi inegalitatea 2ε < −h′′(0) rezultă:

(6) I2 ≤
∫ ∞
−∞

e
1
2
tx2[h′′(0)+2ε]dx = 2

∫ ∞
0

e−
1
2
tx2[−h′′(0)−2ε]dx =

=
√
π

1√
1
2
t[−h′′(0)− 2ε]

=

√
2π

−t[h′′(0) + 2ε]
.

Utilizând (2), (5) şi (6) obţinem∫ +∞

−∞
eth(x)dx =

∫
(−∞,−δ]∪[δ,+∞)

e(t−1)h(x) · eh(x)dx+

∫ δ

−δ
eth(x)dx <

< e−(t−1)M ·
∫

(−∞,−δ]∪[δ,+∞)

eh(x)dx+ I2 ≤

≤ e−tM · eM ·
∫ +∞

−∞
eh(x)dx+

√
2π

−t[h′′(0) + 2ε]
.

Deoarece
∫ +∞
−∞ eh(x)dx converge, notăm K = eM

∫ +∞
−∞ eh(x)dx ∈ R şi, din

relaţia de mai sus, obţinem

(7)

∫ +∞

−∞
eth(x)dx < K · e−tM +

√
2π

−t[h′′(0) + 2ε]
,∀t > 0.

Împărţind relaţia (7) cu
√

2π
−th′′(0)

şi trecând la limită superioară după

t→ +∞ obţinem

(8) lim sup
t→+∞

∫ +∞
−∞ eth(x)dx√

2π
−th′′(0)

≤

√
h′′(0)

h′′(0) + ε
,∀ε ∈

(
0,
−h′′(0)

2

)
.
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Din (8), dacă ε→ 0, obţinem

(9) lim sup
t→+∞

∫ +∞
−∞ eth(x)dx√

2π
−th′′(0)

≤ 1.

Pe de altă parte, folosind iarăşi relaţiile (5) şi propoziţia 3.2.2,∫ +∞

−∞
eth(x)dx ≥

∫ δ

−δ
eth(x)dx > I1 =

=

∫ ∞
−∞

e
1
2
tx2[h′′(0)−2ε]dx−

∫
(−∞,−δ]∪[δ,∞)

e
1
2
tx2[h′′(0)−2ε]dx =

=

√
2π

−t[h′′(0)− 2ε]
−
∫

(−∞,−δ]∪[δ,∞)

e
1
2

(t−1)x2[h′′(0)−2ε] · e
1
2
x2[h′′(0)−2ε]dx.

Observăm că 1
2
x2[h′′(0) − 2ε] ≤ δ2

2
[h′′(0) − 2ε] ≡ −M(ε) < 0,∀x ∈ R cu

|x| ≥ δ şi atunci, din inegalitatea precedentă obţinem

∫ +∞

−∞
eth(x)dx >

√
2π

−t[h′′(0)− 2ε]
−e−

δ2

2
[2ε−h′′(0)](t−1)·

∫ +∞

−∞
e−

1
2
x2[2ε−h′′(0)]dx =

=

√
2π

−t[h′′(0)− 2ε]
− e−tM(ε) · eM(ε) ·

√
2π

2ε− h′′(0)
.

Notăm K(ε) = eM(ε) ·
√

2π
2ε−h′′(0)

∈ R şi obţinem

(10)

∫ +∞

−∞
eth(x)dx >

√
2π

−t[h′′(0)− 2ε]
−K(ε) · e−tM(ε).

Împărţim relaţia (10) cu
√

2π
−th′′(0)

şi trecem la limită inferioară după

t→ +∞:

(11) lim inf
t→+∞

∫ +∞
−∞ eth(x)dx√

2π
−th′′(0)

≥

√
h′′(0)

h′′(0)− 2ε
, ∀ε ∈

(
0,
−h′′(0)

2

)
.
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În (11) trecem la limită pentru ε→ 0 şi obţinem

(12) lim inf
t→+∞

∫ +∞
−∞ eth(x)dx√

2π
−th′′(0)

≥ 1.

Din (9) şi (12) rezultă că există

lim
t→+∞

∫ +∞
−∞ eth(x)dx√

2π
−th′′(0)

= 1.
�

3.2.5 Corolar. Fie h : R → R o funcţie care are proprietăţile 1), 4) şi 5)
din teorema precedentă şi

2a). h(x) < h(0),∀x ∈ R \ {0},
3a). ∃b, c > 0 a.̂ı. h(x)− h(0) ≤ −b, dacă |x| ≥ c.
Atunci ∫ +∞

−∞
eth(x)dx ∼ et·h(0)

√
2π

−th′′(0)
(t→ +∞).

Demonstraţie. Funcţia h1 : R → R, h1(x) = h(x) − h(0),∀x ∈ R,
verifică condiţiile teoremei precedente.

3.2.6 Observaţie. Putem remarca schimbarea de comportament a inte-
gralei ı̂n funcţie de valoarea pe care o ia funcţia h ı̂n origine. Astfel

h(0) > 0 =⇒
∫ +∞
−∞ eth(x)dx→ +∞ cu viteza lui eth(0);

h(0) = 0 =⇒
∫ +∞
−∞ eth(x)dx→ 0 cu viteza lui 1√

t
;

h(0) < 0 =⇒
∫ +∞
−∞ eth(x)dx→ 0 cu viteza lui eth(0).

Integrale de tipul
∫ +∞
0 e−txxλg(x)dx

3.2.7 Teoremă (Lema lui Watson). Fie g : [0,+∞) → R o funcţie cu
proprietăţile:

1). g este continuă pe [0,+∞).
2). ∃r > 0,∃(an)n ⊆ R a.̂ı. g(x) =

∑∞
n=0 anx

n, ∀x ∈ [0, r].
3). ∃k > 0,∃c ∈ R a.̂ı. |g(x)| ≤ k · ecx,∀x ∈ [0,+∞).
Atunci, ∀λ > −1,∫ +∞

0

e−txxλg(x)dx ≈
+∞∑
n=0

anΓ(λ+ n+ 1)t−(λ+n+1) (t→∞).
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mi Demonstraţie.
Fie α ∈ R a.̂ı. −λ < α < 1; atunci limx→0 x

λ
[
e−txxλ|g(x)|

]
= 0 < +∞ deci∫∞

0
e−txxλg(x)dx este absolut convergentă ı̂n 0.∣∣e−txxλg(x)

∣∣ ≤ Ke(−t+c)xxλ şi deci

lim
x→∞

x2
[
e−txxλ|g(x)

]
≤ lim

x→∞
Ke(−t+c)xxλ+2 = 0, dacă t > c.

Rezultă că
∫∞

0
e−txxλg(x)dx este absolut convergentă la ∞ când t > c.

Deci
∫∞

0
e−txxλg(x)dx este absolut convergentă când t este ı̂ntr-o vecină-

tate a lui +∞.∫ ∞
0

e−txxλg(x)dx =

∫ r

0

e−txxλg(x)dx︸ ︷︷ ︸
I1

+

∫ ∞
r

e−txxλg(x)dx︸ ︷︷ ︸
I2

.

Pentru t > c+ 1 avem

(1) |I2| ≤ K

∫ ∞
r

e(−t+c)xxλdx = K

∫ ∞
r

e(−t+c+1)xe−xxλdx ≤

≤ Ke(−t+c+1)r

∫ ∞
r

e−xxλdx = K1e
−tr.

Pentru orice N ∈ N definim rN(x) = g(x)−
∑N

n=0 anx
n.

Să observăm că rN(x) =
∑∞

n=N+1 anx
n = xN+1 · (aN+1 + aN+2 + · · · ) =

xN+1 · g1(x). Funcţia g1 este continuă pe [0, r] şi deci există L > 0 a.̂ı.

(2) |rN(x)| ≤ L · xN+1,∀x ∈ [0, r].

(3) I1 =

∫ r

0

e−txxλg(x)dx =
N∑
n=0

an ·
∫ r

0

e−txxλ+ndx+

∫ r

0

e−txxλrN(x)dx.

Din (2) şi (3) rezultă

(4)

∣∣∣∣∫ r

0

e−txxλrN(x)dx

∣∣∣∣ ≤ L ·
∫ r

0

e−txxλ+N+1dx.



3.2. Metoda lui Laplace 101

Să evaluăm integralele Iα(t) =
∫ r

0
e−txxαdx; facem ı̂ntâi schimbarea de vari-

abilă tx = y şi obţinem

(5) Iα(t) =

∫ tr

0

e−yt−(α+1)yαdy = t−(α+1)


∫ ∞

0

e−yyαdy −
∫ ∞
tr

e−yyαdy︸ ︷︷ ︸
J(t)

 =

= t−(α+1) · Γ(α + 1)− t−(α+1) · J(t).

În integrala J(t) facem schimbarea de variabilă y = tr(1 + u) şi obţinem

J(t) =

∫ ∞
0

e−tre−tru(tr)α+1(1 + u)αdu.

Deoarece 1 + u ≤ eu, ∀u ∈ R obţinem

J(t) ≤ e−tr(tr)α+1

∫ ∞
0

e(−tr+α)udu = e−tr(tr)α+1 1

tr − α
≈

≈ e−tr(tr)α (t→ +∞)

şi deci

(6) t−(α+1) · J(t) = o
(
e−tr

)
(t→ +∞).

Din relaţiile (4) şi (5) obţinem∣∣∣∣∫ r

0

e−txxλrN(x)dx

∣∣∣∣ ≤ L · Iλ+N+1(t) =

= L · Γ(λ+N + 2) · t−(λ+N+2) + t−(λ+N+2) · J(t).

Deoarece o
(
e−tr

)
= O

(
t−(λ+N+2)

)
obţinem din (6)

(7)

∫
6r0e
−txxλrN(x)dx = O

(
t−(λ+N+2)

)
.

Din (3), (5), (6) şi (7) rezultă

I1 =
N∑
n=0

anIλ+n(t) +O
(
t−(λ+N+2)

)
=

N∑
n=0

anΓ(λ+ n+ 1)t−(λ+n+1)+
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+o
(
e−tr

)
+O

(
t−(λ+N+2)

)
sau

(8) I1 =
N∑
n=0

anΓ(λ+ n+ 1)t−(λ+n+1) +O
(
t−(λ+N+2)

)
şi deci, ∀N ∈ N, ∫ ∞

0

e−txxλg(x)dx = I1 +O
(
e−tr

)
=

=
N∑
n=0

anΓ(λ+ n+ 1)t−(λ+n+1) +O
(
t−(λ+N+2)

)
,

ceea ce este echivalent cu∫ ∞
0

e−txxλg(x)dx ≈
∞∑
n=0

anΓ(λ+ n+ 1)t−(λ+n+1) (t→∞).
�

3.2.8 Observaţie. Rezultatul din teorema precedentă rămâne valabil dacă
se ı̂nlocuieşte semidreapta [0,+∞) cu intervalul [0, T ) cu T ∈ R+.

3.2.9 Exemple. 1). Să determine dezvoltarea asimptotică pentru t→ +∞
a funcţiei f(t) =

∫ +∞
0

e−tx ln(1 + x+ x2)dx.

În exemplul 3.2.3 am obţinut următoarea dezvoltare:

ln(1 + x+ x2) =
∞∑
n=1

anx
n,∀x ∈ [0,

1

2
), unde

a3n−2 = 1
3n−2

, a3n−1 = 1
3n−1

, a3n = − 2
3n
, ∀n ∈ N∗.

Rezultă că funcţia g : [0,+∞)→ R, g(x) = ln(1 + x + x2),∀x ∈ [0,+∞)
este continuă şi dezvoltabilă ı̂n serie de puteri pe o vecinătate a originii;
condiţia 3) din lema lui Watson este de asemenea ı̂ndeplinită şi deci∫ ∞

0

e−tx ln(1 + x+ x2)dx ≈
∞∑
n=1

anΓ(n+ 1)t−(n+1) (t→∞) sau

∫ ∞
0

e−tx ln(1 + x+ x2)dx ≈
∞∑
n=1

an · n!

tn+1
(t→∞).
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2). În exemplul 3.2.3 am arătat că∫ +∞

−∞
e−tx

2 · ln (1 + x+ x2)dx ≈
∞∑
n=1

√
π

(2n− 1)!!

2n
a2nt

−(n+ 1
2

) (t→∞)

unde (an)n este şirul coeficienţilor dezvoltării ı̂n serie a funcţiei g : [−1
2
, 1

2
]→

R, g(x) = ln(1 + x+ x2). Vom regăsi acest rezultat ca o aplicaţie a lemei lui
Watson.

Întâi vom transforma integrala∫ +∞

−∞
e−tx

2 · ln (1 + x+ x2)dx =

∫ 0

−∞
e−tx

2 · ln (1 + x+ x2)dx+

+

∫ +∞

0

e−tx
2 · ln (1 + x+ x2)dx =

=

∫ +∞

0

e−tx
2 ·
[
ln (1− x+ x2) + ln (1 + x+ x2)

]
dx =

=

∫ +∞

0

e−tx
2 · ln (1 + x2 + x4)dx.

Dacă ı̂n ultima integrală facem schimbarea de variabilă x 7→
√
x obţinem

f(t) =
1

2

∫ ∞
0

e−txx−
1
2 ln(1 + x+ x2)dx.

Acestei ultime integrale ı̂i putem aplica lema lui Watson şi obţinem

f(t) ≈ 1

2

∞∑
n=1

anΓ

(
n+

1

2

)
· t−(n+ 1

2
) (t→∞)

sau

f(t) ≈
√
π
∞∑
n=1

(2n− 1)!!

2n
· an

2
· t−(n+ 1

2
) (t→∞).

Se poate uşor arăta că şirul (an)n verifică relaţia de recurenţă an = 2a2n,∀n ∈
N∗ şi regăsim astfel rezultatul anunţat.

O altă aplicaţie a lemei lui Watson o prezentăm ı̂n scţiunea următoare.
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Integrale de tipul
∫ β
α e
−tx2h(x)dx

3.2.10 Teoremă. Fie α, β ∈ R̄ a.̂ı. α < 0 < β şi fie h : (α, β) → R o
funcţie continuă cu proprietăţile:

1).
∫ β
α
e−tx

2
h(x)dx este convergentă, oricare ar fi t > 0.

2). Există r > 0 şi există un şir (an)n ⊆ R a.̂ı. h(x) =
∑∞

n=0 anx
n,∀x ∈ R

cu |x| ≤ r.
3). Există K, c > 0 a.̂ı. |h(x)| ≤ Kecx, ∀x ∈ (α, β).
Atunci∫ β

α

e−tx
2

h(x)dx ≈
∞∑
n=0

a2nΓ

(
n+

1

2

)
· t−(n+ 1

2
) (t→∞).

mi Demonstraţie. Observăm că
∣∣∣e−tx2h(x)

∣∣∣ ≤ Ke−tx
2+cx şi că inte-

grala
∫ β
α
e−tx

2+cxdx este convergentă; rezultă că integrala
∫ β
α
e−tx

2
h(x)dx este

absolut convergentă.
Efectuăm ı̂n integrală schimbarea de variabilă x = −√y pe intervalul

[α, 0] şi x =
√
y pe [0, β] şi obţinem∫ β

α

e−tx
2

h(x)dx =

∫ 0

α

e−tx
2

h(x)dx+

∫ β

0

e−tx
2

h(x)dx =

=
1

2

∫ α2

0

e−tyy−
1
2h(−√y)dy +

1

2

∫ β2

0

e−tyy−
1
2h(
√
y)dy =

=
1

2

∫ r2

0

e−tyy−
1
2 [h(−√y) + h(

√
y)] dy+

+
1

2

∫ α2

r2
e−tyy−

1
2h(−√y)dy +

1

2

∫ β2

r2
e−tyy−

1
2h(
√
y)dy.

Observăm că∣∣∣∣∣12
∫ α2

r2
e−tyy−

1
2h(−√y)dy

∣∣∣∣∣ ≤ K

2

∫ α2

r2
e−tyy−

1
2 e−c

√
ydy ≤

≤ K

2
· e−tr2

∫ ∞
0

y−
1
2 e−c

√
ydy = K1 · e−tr

2

.
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În mod asemănător obţinem şi inegalitatea∣∣∣∣∣12
∫ β2

r2
e−tyy−

1
2h(
√
y)dy

∣∣∣∣∣ ≤ K2 · e−tr
2

şi deci putem utiliza lema lui Watson şi observaţia 3.2.8 pentru a obţine∫ β

α

e−tx
2

h(x)dx ≈
∞∑
n=0

a2nΓ

(
−1

2
+ n+ 1

)
· t−(− 1

2
+n+1) (t→∞),

sau ∫ β

α

e−tx
2

h(x)dx ≈
∞∑
n=0

a2nΓ

(
n+

1

2

)
· t−(n+ 1

2
) (t→∞).

�

3.3 Formula lui Stirling

În acest scurt paragraf vom utiliza rezultatele din paragraful precedent pentru
a obţine diverse forme ale formulei lui Stirling.
Fie Γ : (−1,+∞)→ R funcţia definită prin Γ(t+ 1) =

∫∞
0
e−xxtdx,∀t > −1.

Efectuând schimbarea de variabilă x = t+ y, obţinem

Γ(t+ 1) = e−t
∫ ∞
−t

e−y · (t+ y)tdy = e−t · tt
∫ ∞
−t

e−y ·
(

1 +
y

t

)t
dy

care după o nouă schimbare de variabilă (y = tx) devine

Γ(t+ 1) = e−t · tt+1

∫ ∞
−1

e−tx · (1 + x)tdx sau

Γ(t+ 1) = e−t · tt+1

∫ ∞
−1

et[−x+ln(1+x)]dx.

Dacă notăm cu h(x) = −x + ln(1 + x), funcţia h : (−1,+∞) → R este
continuă şi h(x) < h(0) = 0,∀x ∈ (−1,+∞) \ {0}.

Aplicăm teorema 3.2.4; condiţiile 1) şi 2) sunt verificate. Deoarece
limx→−1 h(x) = −∞ = limx→∞ h(x), este verificată şi condiţia 3).

h′′(0) = −1 < 0 iar
∫∞
−1
eh(x)dx = e · Γ(2) este convergentă. Atunci, din

teorema citată, obţinem∫ ∞
−1

eth(x)dx ∼
√

2π

t
(t→∞) şi deci
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Γ(t+ 1) ∼
√

2πt ·
(
t

e

)t
(t→∞).

Aceasta este o primă formă a formulei lui Stirling. Dacă, ı̂n particular con-
siderăm şirul (tn)n∈N definit prin tn = n,∀n ∈ N, obţinem

n! ∼
√

2πn
(n
e

)n
(n→ +∞).

Putem ı̂ncerca să rafinăm formula lui Stirling ı̂n felul următor.

În integrala

∫ +∞

−1

eth(x)dx facem schimbarea de variabilă

(∗) y2 = −2h(x) = 2x− 2 ln(1 + x).

Într-o vecinătate a originii putem explicita x ca funcţie analitică de y, deci
putem obţine funcţia x : [−r, r]→ R sub forma:

x(y) = x(0) +
x′(0)

1!
· y +

x′′(0)

2!
· y2 + · · ·

sau

x(y) =
∞∑
n=0

an · yn, unde an =
x(n)(0)

n!
,∀n ∈ N.

Să determinăm şirul (an)n; derivăm relaţia (*) ı̂n raport cu y şi obţinem

x′(y) = (1 + x) · y
x
,

x′′(y) = (1 + x) · x
2 − y2

x3
,

x′′′(y) = (1 + x) · y
x
· 3y2 + 2xy2 − 3x2

x4
,

· · · · · ·

x(0) = 0 şi cum limy→0
y

x(y)
= 1 iar limy→0

x2(y)− y2

x3(y)
=

2

3
, obţinem

x′(0) = 1, x′′(0) = 2
3
, x′′′(0) = 1

6
. Atunci

x(y) = y +
1

3
· y2 +

1

36
· y3 + · · ·



3.3. Formula lui Stirling 107

de unde

x′(y) = 1 +
2

3
· y +

1

12
· y2 + · · · .

Atunci există c > 0 a.̂ı.

Γ(t+ 1) = e−t · tt+1

[∫ r

−r
e−

1
2
ty2 · x′(y)dy +O

(
e−ct

)]
(t→∞) =

= e−ttt+1

[∫ r√
2

− r√
2

e−tx
2

(
1 +

2
√

2

3
· u+

1

6
· u2 + · · ·

)
dy +O

(
e−ct

)]
(t→∞).

Utiliẑınd teorema 3.2.10 obţinem atunci

Γ(t+ 1) ≈ e−ttt+1
√

2

[
Γ

(
1

2

)
· t−

1
2 +

1

6
· Γ
(

3

2

)
· t−

3
2 + · · ·

]
(t→∞)

sau

Γ(t+ 1) ≈
√

2πt

(
t

e

)t
·
[
1 +

1

12
· t−1 + · · ·

]
(t→∞)
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Capitolul 4

Algoritmi de integrare utilizaţi
ı̂n tehnica de calcul

Utilizarea diverselor softuri pentru calculatoare nu presupune cunoştinţe de
specialitate asupra principiilor teoretice pe care se bazează acestea ci vizează
doar ı̂nsuşirea unor deprinderi de a utiliza comenzi care fac programul să
lucreze. Este evident ı̂nsă că pentru ı̂mbunătăţirea acestor softuri şi pentru
crearea altora noi trebuie ı̂mbinate calităţile informaticianului şi cunoştinţele
specialistului. Consider interesant să exemplific aceasta printr-o problemă
punctuală a carei tratare va face obiectul prezentului capitol; problema este:
cum procedează un program ca “Mathematica”, “Mathlab” sau “Maple” ı̂n
faţa comenzii de a calcula primitiva unei funcţii ? Aparatul matematic care
stă la baza algoritmului folosit pentru executarea acestei comenzi include
pe lângă metodele clasice de integrare (tabele de primitive imediate, inte-
grare prin părţi, substituţii, descompuneri ı̂n fracţii simple ş.a.) şi aplicarea
unui algoritm a lui Risch, algoritm care are la bază principiul matematic
al lui Laplace-Liouville. Acest algoritm asociat cu utilizarea unor funcţii
suplimentare are drept rezultat calculul primitivelor, pentru funcţiile ce ad-
mit primitive exprimabile prin funcţii elementare sau răspunsul că astfel de
primitive nu există.

Pe scurt principiul lui Laplace-Liouville afirmă că, dacă primitiva unei
funcţii f : D ⊆ C→ C se poate exprima prin funcţii elementare (logaritmi şi

exponenţiale) atunci ea este de forma
n∑
i=1

αi ln(pi(z)) + p0(z), unde, pentru

orice i = 1, · · · , n, pi sunt funcţii raţionale ı̂n f(z) şi z iar αi sunt constante

109
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numerice. Pentru a demonstra acest rezultat a fost nevoie să se introducă
noţiunea de corp Liouville şi să se prezinte rezultate relative la extensiile unui
corp Liouville prin elemente transcendente ale sale.

În finalul capitolului se dau aplicaţii ale acestui principiu la găsirea de
condiţii ı̂n care expresii de forma F (w(z), z) au primitive exprimabile prin
funcţii elementare ı̂n w şi z, unde w(z) =

∫
p(z)dz. Această problemă este

tratată complet ı̂n cazurile particulare F (w(z), z) = A0(z) · w(z) + A1(z)
cu A0 şi A1 funcţii raţionale precum şi ı̂n cazul când F este polinom ı̂n w.
Condiţiile de integrabilitate obţinute sunt exprimabile ı̂ntr-o formă algorit-
mică ce permite scrierea unor programe care să ducă efectiv la exprimarea
primitivelor.

4.1 Extinderi de corpuri

În acest paragraf prin corp vom ı̂nţelege un corp comutativ.

4.1.1 Definiţie. Fie k un subcorp al corpului K; ı̂n acest caz K se mai
numeşte o extensie a corpului k.

K se numeşte o extensie finită a lui k dacă există x1, · · · , xn ∈ K aşa
fel ı̂ncât, oricare ar fi x ∈ K, x se scrie ı̂n mod unic x = a1x1 + · · · + anxn
cu a1, · · · , an ∈ k. Mulţimea {x1, · · · , xn} se numeşte bază a extensiei K a
corpului k.

4.1.2 Definiţie. Fie K o extensie a corpului k; un element θ ∈ K se
numeşte algebric peste k dacă există un polinom f0 ∈ k(X) aşa fel ı̂ncât
f0(θ) = 0.

Dacă θ ∈ K nu este algebric peste k atunci el se numeşte transcendent
peste k.

O extensie K a unui corp k se numeşte extensie algebrică dacă orice
element al lui K este algebric peste k.

4.1.3 Teoremă. Fie k un corp şi fie θ un element algebric peste k; atunci
k(θ) = {f(θ) : f ∈ k(X)} este o extensie algebrică a lui k.

k(θ) este cea mai mică extensie a lui k ce conţine θ.

mi Demonstraţie. Deoarece k(X) conţine polinoamele constante precum
şi polinomul identic, k ⊆ k(θ) şi θ ∈ k(θ).
k(θ) este inel comutativ faţă de operaţiile obişnuite de adunare şi ı̂nmulţire.
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Să arătăm că elementele nenule ale lui k(θ) admit invers.
Fie f0 ∈ k(X) un polinom unitar nenul şi ireductibil cu coeficienţi din k

astfel ı̂ncât f0(θ) = 0 şi fie η ∈ k(θ), η 6= 0; atunci există f ∈ k(X) aşa fel
ı̂ncât η = f(θ). Aplicând teorema ı̂mpărţirii cu rest, există q, r ∈ k(X) aşa
fel ı̂ncât f = f0 · q + r şi grad(r) < grad(f0) = n. Atunci

η = f(θ) = f0(θ) · q(θ) + r(θ) = r(θ) 6= 0.

Deoarece f0 este ireductibil, f0 şi q sunt prime ı̂ntre ele şi deci există u, v ∈
k(X) aşa fel ı̂ncât f0 · u+ r · v = 1; rezultă că r(θ) · v(θ) = 1 sau η · v(θ) = 1
şi deci η este inversabil.

Deci k(θ) este o extensie a lui k ce conţine θ. Pe de altă parte este evident
că orice altă extensie a lui k ce conţine θ va conţine şi pe k(θ), de unde rezultă
că k(θ) este cea mai mică extensie a lui k care conţine θ.

Să arătăm că k(θ) este o extensie algebrică.
Aşa cum am observat din cele de mai sus, ∀η ∈ k(θ),∃r ∈ k(X) cu

grad(r) < n astfel ı̂ncât η = r(θ). Deci

(∗)


η = a1

0 · 1 + a1
1 · θ + a1

2 · θ2 + · · ·+ a1
n−1 · θn−1

η2 = a2
0 · 1 + a2

1 · θ + a2
2 · θ2 + · · ·+ a2

n−1 · θn−1

· · ·
ηn+1 = an+1

0 · 1 + an+1
1 · θ + an+1

2 · θ2 + · · ·+ an+1
n−1 · θn−1

,

unde aji ∈ k,∀i ∈ {0, ..., n− 1}, ∀j ∈ {1, ..., n+ 1}.
În (∗) substituim {1, θ, θ2, ..., θn−1} din primele n relaţii ı̂n ultima şi de-

terminăm un polinom g ∈ k(X) astfel ı̂ncât g(η) = 0 ceea ce va arăta că η
este algebric. Practic procedăm ı̂n felul următor:

Pentru j = 1 există i1 ∈ {0, ..., n − 1} astfel ı̂ncât a1
i1
6= 0 (presupunem

că η 6= 0). Putem astfel determina din prima relaţie θi1 ı̂n funcţie de η şi
de θi, i ∈ {0, ..., n − 1} \ {i1}. Înlocuim pe θi1 astfel determinat ı̂n celelalte
relaţii din (∗) şi obţinem

(∗∗)


η2 − c1η =

∑
i 6=i1 b

2
i · θi

η3 =
∑

i 6=i1 b
3
i · θi

· · ·
ηn+1 =

∑
i 6=i1 b

n+1
i · θi

,

unde c1 ∈ k şi bji ∈ k, ∀i ∈ {0, ..., n− 1} \ {i1},∀j ∈ {2, ..., n+ 1}.
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Dacă ı̂n prima relaţie din (∗∗) toţi coeficienţii b2
i sunt nuli atunci g(η) =

η2 − c1 · η = 0 şi deci η este algebric peste k.
Dacă există i2 ∈ {0, ..., n−1}\{i1} aşa fel ı̂ncât b2

i2
6= 0 atunci, din prima

relaţie din (∗∗), exprimăm pe θi2 ı̂n funcţie de θi, i ∈ {0, ..., n − 1} \ {i1, i2}
şi de η2, η; ı̂nlocuindu-l ı̂n celelalte relaţii din (∗∗), obţinem

(∗ ∗ ∗)


η3 − d1 · η2 − d2 · η =

∑
i 6=i1,i2 c

3
i · θi

· · ·
ηn+1 =

∑
i 6=i1,i2 c

n+1
i · θi

,

unde d1, d2 ∈ k şi cji ∈ k,∀i ∈ {0, ..., n − 1} \ {i1, i2},∀j ∈ {3, ..., n + 1},
ş.a.m.d.

După cel mult n astfel de ı̂nlocuiri obţinem o relaţie de tipul

g(η) = ηn+1 − e1 · ηn − e2 · ηn−1 − · · · − en+1 = 0,

unde ei ∈ k,∀i ∈ {1, ..., n+ 1}, ceea ce arată că η este algebric peste k.
�

4.1.4 Observaţie. k(θ) este o extensie finită a lui k şi admite drept bază
mulţimea {1, θ, ..., θn−1}.

4.1.5 Teoremă. Fie k un corp şi fie θ un element transcendent peste k; cea
mai mică extensie a lui k ce conţine pe θ este

k(θ) =

{
f(θ)

g(θ)
: f, g ∈ k(X)

}
.

Demonstraţie. Remarcăm că, pentru orice g ∈ k(X), g(θ) 6= 0 şi deci k(θ)
este corect construit (din definiţia elementelor transcendente, se sub̂ınţelege
existenţa unei extensii K a lui k ce conţine θ; astfel este bine definită operaţia
f(θ)

g(θ)
∈ K).

Este evident că k(θ) este corp şi că θ ∈ k(θ), k ⊆ k(θ). În plus orice
extensie a lui k ce conţine θ va conţine ı̂n mod evident şi pe k(θ).

�

4.1.6 Exemple.
1). Fie Q corpul numerelor raţionale;

√
2 este un element algebric peste

Q. Rezultă că Q(
√

2) = {f(
√

2) : f ∈ Q(X)}. Putem uşor observa că,
∀f ∈ Q(X), f(

√
2) = a+ b ·

√
2, unde a, b ∈ Q şi deci

Q(
√

2) = {a+ b ·
√

2 : a, b ∈ Q}.
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2). π este transcendent peste Q şi deci

Q(π) =

{
f(π)

g(π)
: f, g ∈ Q(X)

}
.

În cele ce urmează ne vom ocupa de o clasă specială de corpuri - corpurile
Liouville.

Corpuri Liouville

Vom aminti câteva definiţii şi rezultate privitoare la funcţiile complexe de o
variabilă complexă.

Fie C mulţimea numerelor complexe cu structura sa uzuală de corp nor-
mat complet şi fie D ⊆ C o mulţime deschisă. O funcţie f : D → C este

derivabilă ı̂n z0 ∈ D dacă există lim
z→z0

f(z)− f(z0)

z − z0

∈ C; această limită se

notează cu f ′(z0) şi se numeşte derivata funcţiei f ı̂n z0.
Fie z0 = x0 + iy0 şi f(z) = u(x, y) + iv(x, y),∀z = x + iy ∈ D; atunci f

este derivabilă ı̂n z0 dacă şi numai dacă funcţiile reale de două variabile u şi
v sunt diferenţiabile ı̂n (x0, y0) şi sunt verificate condiţiile Cauchy-Riemann:

∂u

∂x
(x0, y0) =

∂v

∂y
(x0, y0)

∂u

∂y
(x0, y0) = −∂v

∂x
(x0, y0)

.

În acest caz f ′(z0) =
∂u

∂x
(x0, y0) + i

∂v

∂x
(x0, y0) =

∂v

∂y
(x0, y0)− i ∂u

∂y
(x0, y0).

Funcţia f este olomorfă pe D dacă este derivabilă ı̂n toate punctele lui D.
Un punct z0 ∈ D este un punct singular izolat pentru f (singularitate

aparentă, pol sau singularitate esenţială) dacă există un deschis Dz0 ⊆ D
care conţine z0 aşa fel ı̂ncât funcţia f să fie olomorfă pe mulţimea deschisă
Dz0 \ {z0}.

Putem acum formula definiţia corpurilor Liouville.

4.1.7 Definiţie. Fie D ⊆ C o mulţime deschisă şi fie R(D) o mulţime
de funcţii f : D \ If → C care admit, fiecare ı̂n parte, o mulţime cel mult
numărabilă de singularităţi izolate If ; R(D) se numeşte corp Liouville de
funcţii pe D dacă sunt ı̂ndeplinite condiţiile:
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a). (R(D),+, ·) este corp faţă de operaţiile uzuale de adunare şi ı̂nmulţire
şi C ⊆ R(D) (R(D) conţine funcţiile constante).

b). ∀f ∈ R(D), f este uniformă şi olomorfă pe D \ If .
c). ∀f ∈ R(D), f ′ ∈ R(D).

Când mulţimea D este sub̂ınţeleasă vom nota R ı̂n loc de R(D).

4.1.8 Exemplu. Cel mai simplu exemplu de corp Liouville ı̂l constituie
corpul funcţiilor complexe raţionale:

R =

{
P (z)

Q(z)
: P,Q ∈ C(X)

}
.

Este evident că R este un corp ce conţine funcţiile constante; ∀P,Q ∈ C(X)

(deci P şi Q polinoame cu coeficienţi complexi),
P

Q
este o funcţie uniformă

şi olomorfă pe C cu excepţia unui număr finit de poli. De asemenea(
P

Q

)′
=
P ′Q− PQ′

Q2
∈ R.

Corpurile Liouville fiind corpuri algebrice admit extensii faţă de elemente
algebrice sau transcendente; ne interesează ı̂n ce condiţii astfel de extensii
sunt la rândul lor corpuri Liouville.

Fie θ : D \ Iθ → C o funcţie uniformă şi olomorfă pe D cu excepţia unei
mulţimi cel mult numărabile de singularităţi izolate Iθ şi fie R(D) un corp
Liouville pe D; să presupunem că θ este un element algebric peste R(D) ,
deci că există un polinom P0 cu coeficienţi din R(D) aşa fel ı̂ncât P0(θ) = 0.
Teorema 4.1.3 ne asigură că {P (θ) : P ∈ R(D)(X)} este cea mai mică
extensie algebrică a lui R(D) ce conţine θ; această extensie nu conţine ı̂nsă
ı̂n mod obligatoriu şi pe θ′ şi astfel nu este corp Liouville.

4.1.9 Teoremă. Fie R un corp Liouville de funcţii pe deschisul D ⊆ C şi
fie θ : D \ Iθ → C o funcţie uniformă şi olomorfă pe D cu excepţia unei
mulţimi cel mult numărabile de singularităţi izolate Iθ; vom nota cu

R(θ) =

{
P (θ)

Q(θ)
: P,Q ∈ R(X), Q(θ) 6= 0

}
.

Condiţia necesară şi suficientă pentru ca R(θ) să fie corp Liouville pe D este
ca θ′ ∈ R(θ). În acest caz R(θ) este cea mai mică extensie Liouville a lui R
care conţine pe θ.
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Demonstraţie. Este evident că R(θ) este corp faţă de operaţiile uzuale
de adunare şi de ı̂nmulţire şi că R(θ) este o extensie a lui R ce conţine θ. De
asemenea se poate uşor observa că orice funcţie f din R(θ) este uniformă şi
olomorfă pe D \ If , unde If este o mulţime de singularităţi izolate ale lui f
cel mult numărabilă. Rezultă că R(θ) va fi corp Liouville peste D dacă şi
numai dacă, ∀f ∈ R(θ), f ′ ∈ R(θ).

Dacă R(θ) este corp Liouville atunci ı̂n mod evident θ′ ∈ R(θ).
Reciproc, presupunem că θ′ ∈ R(θ) şi fie f ∈ R(θ) o funcţie arbitrară.

Atunci există două polinoame P,Q ∈ R(X) cu Q(θ) 6= 0 aşa fel ı̂ncât

f(z) =
P (θ(z))

Q(θ(z))
,∀z ∈ D \ If . În acest caz

f ′(z) =
P ′(θ(z)) ·Q(θ(z))− P (θ(z)) ·Q′(θ(z))

Q2(θ(z))
· θ′(z).

Cum θ′ ∈ R(θ), există P1, Q1 ∈ R(X) cu Q1(θ) 6= 0 aşa fel ı̂ncât θ′(z) =
P1(θ(z))

Q1(θ(z))
,∀z ∈ D \ Iθ; atunci

f ′ =
[P ′(θ) ·Q(θ)− P (θ) ·Q′(θ)] · P1(θ)

Q2(θ) ·Q1(θ)
=
P2(θ)

Q2(θ)

cu P2, Q2 ∈ R(X) şi Q2(θ) 6= 0.
Rezultă că f ′ ∈ R(θ) şi deci R(θ) este corp Liouville.
Este evident că orice extensie Liouville a lui R ce conţine θ conţine şi

R(θ).
�

4.1.10 Corolar. Fie R un corp Liouville de funcţii pe deschisul D ⊆ C şi
fie θ : D \ Iθ → C o funcţie uniformă şi olomorfă pe D cu excepţia unei
mulţimi cel mult numărabile de singularităţi izolate Iθ aşa fel ı̂ncât θ este
element algebric peste R.

Atunci R(θ) =

{
P (θ)

Q(θ)
: P,Q ∈ R(X), Q(θ) 6= 0

}
este extensia Liouville

a lui R ce conţine θ.

Demonstraţie. Conform teoremei precedente R(θ) este corp Liouville pe
D dacă şi numai dacă θ′ ∈ R(θ). Deoarece θ este algebric peste R, există un
polinom de grad minim P0 ∈ R(X) aşa fel ı̂ncât P0(θ) = 0; să presupunem
că P0(X) = a0 ·Xn + a1 ·Xn−1 + · · ·+ an, cu a0, ..., an ∈ R. Deci

a0(z) · θn(z) + a1(z) · θn−1(z) + · · ·+ an(z) ≡ 0.
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Dacă derivăm această identitate obţinem[
a′0(z) · θn(z) + a′1(z) · tn−1(z) + · · ·+ a′n(z)

]
+

+
[
na0(z) · θn−1(z) + (n− 1)a1(z) · θn−2(z) + · · ·+ an−1(z)

]
· θ′(z) = 0.

Polinoamele P (X) = a′0 ·Xn + a′1 ·Xn−1 + · · ·+ a′n şi Q(X) = na0 ·Xn−1 +
(n − 1)a1 · Xn−2 + · · · + an−1 sunt din R(X) şi grad(Q) < n. Rezultă că

Q(θ) 6= 0. Atunci θ′ =
−P (θ)

Q(θ)
∈ R(θ); deci R(θ) este corp Liouville.

�

Dacă θ este transcendent peste R, R(θ) nu este, ı̂n caz general, corp
Liouville. Totuşi există unele elemente transcendente remarcabile θ pentru
care R(θ) este corp Liouville. Înainte de a le prezenta vom reaminti definiţiile
câtorva dintre funcţiile complexe elementare.

4.1.11 Funcţia exponenţială. Aplicaţia f : C → C dată prin f(z) =
ex · (cos y+ i sin y), ∀z = x+ iy ∈ C defineşte o funcţie pe C pe care o numim
funcţia exponenţială şi o notăm cu f(z) = ez, z ∈ C.

Partea reală u şi partea imaginară v sunt definite prin

{
u(x, y) = ex · cos y
v(x, y) = ex · sin y .

Observăm că u şi v sunt funcţii diferenţiabile pe R2 şi că verifică condiţiile
Cauchy-Riemann ı̂n orice punct z = x+ iy ∈ C. Rezultă că f este olomorfă
pe C şi că f ′(z) = ez = f(z),∀z ∈ C.

Reamintim următoarele două formule utile ı̂n analiza complexă:

ez = limn→∞

(
1 +

z

n

)n
,∀z ∈ C,

ez = 1 +
z

1!
+
z2

2!
+ · · ·+ zn

n!
+ · · · ,∀z ∈ C.

Funcţia exponenţială are câteva proprietăţi ce se deduc imediat din definiţie:

ez1+z2 = ez1 · ez2 ,∀z1, z2 ∈ C,
ez+2πi = ez,∀z ∈ C,

eiy = cos y + i sin y,∀y ∈ R,
e0 = 1, ez 6= 0, ∀z ∈ C.

Cu ajutorul acestei funcţii putem introduce alte două funcţii olomorfe pe
C, funcţiile “sinus” şi “cosinus”:

sin z =
eiz − e−iz

2i
= z − z3

3!
+
z5

5!
+ · · ·+ (−1)n

z2n+1

(2n+ 1)!
+ · · ·

cos z =
eiz + e−iz

2
= 1− z2

2!
+
z4

4!
+ · · ·+ (−1)n

z2n

(2n)!
+ · · ·
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4.1.12 Funcţia logaritm. Funcţia multiformă Log : C∗ → 2C definită prin
Log(z) = {w ∈ C : ew = z},∀z ∈ C∗, o numim funcţie logaritm.

Dacă z = |z|(cos argz+ i sin argz) este forma trigonometrică a numărului
z ∈ C∗, atunci |z| > 0 şi

Log(z) = {ln |z|+ i(argz + 2kπ) : k ∈ Z}.

Pentru fiecare k ∈ Z funcţia definită prin

Logk(z) = ln |z|+ i(argz + 2kπ),∀z ∈ C∗,

se numeşte ramură a funcţiei logaritm.
Ramurile acestei funcţii nu sunt funcţii uniforme pe C∗; ele sunt uniforme

dacă considerăm restricţiile lor la D = C \ {z ∈ C : Re(z) ≤ 0, Im(z) = 0}.
Astfel, ∀k ∈ Z,

logk : D → C, logk(z) = ln |z|+ i(argz + 2kπ),

este ramură uniformă a funcţiei logaritm; aceasta este şi olomorfă pe D şi

(logk(z))′ =
1

z
, ∀z ∈ D.

log0 se numeşte ramura principală a logaritmului şi se notează cu log:

log : D → C, log(z) = ln |z|+ i argz,∀z ∈ D.

Funcţiile exponenţială şi logaritm permit construcţia altor funcţii com-
plexe multiforme: funcţia putere, funcţia radical, funcţiile trigonometrice
inverse.

În continuare vom prezenta două exemple remarcabile de extensii Liou-
ville.

4.1.13 Exemple. Fie R un corp Liouville peste deschisul D ⊆ C şi fie
u ∈ R o funcţie ne-identic nulă.

(i) Elementul θ : D \ {z : u(z) = 0} → C definit prin θ(z) = log(u(z)),
este, ı̂n general, transcendent peste R (presupunem că restrângem convenabil
domeniul D pentru a uniformiza ramurile funcţiei logaritm).

Observăm că θ′(z) =
u′(z)

u(z)
şi deci

θ′ ∈ R ⊆ R(θ) =

{
a0logn(u) + · · ·+ an
b0logm(u) + · · ·+ bm

: ai, bj ∈ R
}
.
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Conform teoremei 4.1.9, R(θ) este corp Liouville; el se numeşte extensia
logaritmică Liouville a lui R.

(ii) Elementul θ : D → C, definit prin θ(z) = eu(z), este element transcen-
dent peste R; deoarece θ′(z) = u′(z) · θ(z), rezultă că θ′ ∈ R(θ) şi deci, din
teorema 4.1.9,

R(θ) =

{
a0e

nu(z) + · · ·+ an
b0emu(z) + · · ·+ bm

: ai, bj ∈ R
}

este corp Liouville; el se numeşte extensia exponenţială Liouville a lui R.

4.1.14 Definiţii.
(i) Dacă R este un corp Liouville şi θ este un element algebric peste R,

R(θ) se numeşte extensie algebrică Liouville a lui R.
O extensie Liouville a lui R se numeşte extensie de rang zero dacă ea

se realizează după un număr finit de extensii algebrice Liouville ale lui R.
(ii) Dacă R este un corp Liouville şi θ este un element transcendent peste

R aşa fel ı̂ncât R(θ) este corp Liouville atunci R(θ) se numeşte extensie
transcendentă Liouville a lui R. Extensiile logaritmice şi exponenţiale
prezentate ı̂n 4.1.13 (i) şi (ii) se numesc extensii elementare.

(iii) O extensie Liouville a lui R se numeşte extensie Liouville de rang
n, (n ≥ 1) dacă se obţine după un număr de n extensii transcendente Liouville
peste R. Dacă aceste extensii sunt elementare (deci sunt extensii logaritmice
şi/sau exponenţiale) atunci ele se numesc extensii elementare de rang n.
O extensie Liouville R1 a lui R se numeşte extensie Liouville elementară
dacă există n ∈ N aşa fel ı̂ncât R1 să fie extensie elementară de rang n.

(iv) O funcţie Φ este elementară ı̂n raport cu un corp Liouville R dacă
Φ aparţine unei extensii elementare a lui R.

4.2 Principiul Laplace-Liouville

Funcţiile exponenţială şi logaritmică stau la baza construcţiilor celorlalte
funcţii elementare cunoscute: funcţiile trigonometrice, funcţiile trigonometri-
ce inverse, funcţia putere, funcţia radical (caz particular al funcţiei putere).

Extensiile elementare, ca extensii Liouville efectuate prin funcţii expo-
nenţiale şi logaritmice, sunt deci suficiente pentru a acoperi extensiile unui
corp Liouville efectuate prin alte funcţii elementare.
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Fie R un corp Liouville peste D ⊆ C şi fie φ ∈ R; ne ı̂ntrebăm ı̂n ce
condiţii o primitivă Φ a funcţiei φ pe D aparţine unei extensii Liouville
elementare a luiR. Răspunsul la această ı̂ntrebare ı̂l dă principiul lui Laplace-
Liouville, principiu pe care ı̂l prezentăm mai jos fără demonstraţie.

4.2.1 Teoremă (principiul lui Laplace-Liouville). Fie R un corp Liouville
peste D ⊆ C şi fie φ ∈ R; o primitivă a lui φ, Φ : D \ IΦ → C aparţine unei
extensii Liouville elementare de rang n ∈ N dacă şi numai dacă există n+ 1
funcţii u0, u1, · · · , un ∈ R şi n constante α1, · · · , αn ∈ C aşa fel ı̂ncât

Φ(z) =
n∑
j=1

αj · log(uj(z)) + u0(z),∀z ∈ D \ IΦ.

Dată o funcţie φ ∈ R ne interesează dacă primitiva sa Φ aparţine unei
extensii elmentare a lui R, adică dacă există n ∈ N aşa fel ı̂ncât Φ să aparţină
unei extensii elementare de rang n. Dacă n = 0 atunci Φ trebuie să aparţină
unei extensii obţinute printr-un număr finit de extensii algebrice şi deci, după
teorema 4.1.3 şi corolarul 4.1.10, Φ trebuie să fie algebrică peste R.

Vom prezenta o aplicaţie imediată a principiului Laplace-Liouville.

4.2.2 Exemplu. Fie R corpul Liouville al funcţiilor raţionale (vezi exem-

plul 4.1.8) şi φ : C \ {±i} → C, φ(z) =
1

z2 + 1
; atunci φ ∈ R.

Ne ı̂ntrebăm cum procedează un program conceput să răspundă la ı̂n-
trebarea: φ admite primitive elementare peste R ? (presupunem că acest
program nu ar dispune de un tabel de primitive elementare ci ar utiliza doar
principiul Laplace-Liouville).

Fie deci Φ o primitivă a lui φ; dacă presupunem că Φ este elementară
faţă de R, atunci există n ∈ N aşa fel ı̂ncât Φ să aparţină unei extensii
elementare de rang n a lui R. Conform principiului Laplace-Liouville există
u0, u1, · · · , un ∈ R şi α1, · · · , αn ∈ C aşa fel ı̂ncât

Φ(z) =
n∑
j=1

αj · log(uj(z)) + u0(z).

Dacă presupunem că n = 0 atunci Φ = u0 ∈ R ceea ce este absurd. Într-

adevăr, ı̂n acest caz ar exista P,Q ∈ C(X) aşa fel ı̂ncât Φ(z) =
P (z)

Q(z)
şi
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atunci Φ′(z) =
1

z2 + 1
=
P ′(z) ·Q(z)− P (z) ·Q′(z)

Q2(z)
ceea ce este imposibil

deoarece φ nu admite poli multipli.
Presupunem n = 1 şi deci Φ(z) = α1 log(u1(z)) +u0(z); deoarece u0, u1 ∈

R, există polinoamele P0, Q0, P1, Q1 ∈ C(X) aşa fel ı̂ncât u0 =
P0

Q0

şi u1 =
P1

Q1
şi deci

Φ = α1 · log

(
P1

Q1

)
+
P0

Q0

.

Derivând relaţia precedentă obţinem

1

z2 + 1
= α1 ·

(
P ′1(z)

P1(z)
− Q′1(z)

Q1(z)

)
+
P ′0 ·Q0 − P0 ·Q′0

Q2
0

.

Cum φ nu admite poli multipli u′0 =
P ′0 ·Q0 − P0 ·Q′0

Q2
0

= 0 şi deci u0 este

o funcţie constantă c ∈ C. Remarcăm de asemenea că P1(z) = z + i şi

Q1(z) = z − i şi deci
1

z2 + 1
= α1 ·

(
1

z + i
− 1

z − i

)
de unde α1 = − 1

2i
. Deci

Φ(z) =

∫
dz

z2 + 1
= − 1

2i
· log

(
z + i

z − i

)
+ c =

1

2i
· log

(
z + i

z − i

)
+ c =

=
1

2i
·
[
log(−1) + log

(
i− z
i+ z

)]
+ c =

1

2i
· (π i) +

1

2i
· log

(
i− z
i+ z

)
+ c =

=
1

2i
· log

(
i− z
i+ z

)
+
π

2
+ c.

Rezultatul nu este surprinzător deoarece funcţia “arctangentă”, w, se obţine

din rezolvarea ecuaţiei z = tg w =
1

i
· e

2iw − 1

e2iw + 1
; se obţine imediat

w = arctgz =
1

2i
· log

(
i− z
i+ z

)
.

4.3 Cazuri particulare

În acest paragraf ne propunem să analizăm câteva clase de funcţii pentru care,
utilizând principiul Laplace-Liouville, să decidem asupra condiţiilor ı̂n care
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acestea admit primitive exprimabile prin funcţii elementare şi să calculăm
aceste primitive.

Vom preciza condiţiile ı̂n care lucrăm. Fie R un corp Liouville peste
D ⊆ C şi fie p ∈ R aşa fel ı̂ncât primitiva sa w (w′ = p) este transcendentă
peste R.

Deoarece w′ = p ∈ R ⊆ R(w) rezultă din teorema 4.1.9 că R(w) ={
P (w)

Q(w)
: P,Q ∈ R(X)

}
este corp Liouville peste D (R(w) este cea mai mică

extensie Liouville a lui R care conţine transcendenta w).
În cele ce urmează vom prezenta condiţiile ı̂n care integrale de tipul∫
f(w, z)dz sunt elementare peste R(w) unde f : C×D → C are proprietatea

că f(w, z) = A0(z) · w + A1(z) sau, mai general, f(w, z) =
∑n

k=0C
k
nAk(z) ·

wn−k.

Integrarea expresiilor de forma A0w + A1

4.3.1 Teoremă.
Fie R un corp Liouville pe domeniul D ⊆ C şi fie p ∈ R aşa fel ı̂ncât

w(z) =
∫
p(z)dz defineşte un element transcendent peste R. Fie A0, A1 ∈ R;

condiţia necesară şi suficientă pentru ca

∫
[A0(z)w(z) + A1(z)] dz să de-

finească o funcţie elementară ı̂n raport cu R(w) este ca să existe c ∈ C, a ∈ R
şi o funcţie A elementară ı̂n raport cu R aşa fel ı̂ncât:{
A0(z) = c · p(z) + a′(z),
A1(z) = a(z) · p(z) + A′(z).

În acest caz∫
[A0(z) · w(z) + A1(z)] dz =

c

2
· w2(z) + a(z) · w(z) + A(z).

Integrala de mai sus defineşte o funcţie din R(w) dacă şi numai dacă A ∈ R.

mi Demonstraţie. Aşa cum am precizat mai sus, cel mai mic corp Liouville

ce conţine R şi w este R(w) =

{
P (w)

Q(w)
: P,Q ∈ R(X)

}
.

Necesitatea. Presupunem că F (w, z) =

∫
[A0(z)w(z) + A1(z)] dz defineşte

o funcţie elementară ı̂n raport cu R(w); conform principiului Laplace-Liou-
ville, există n ∈ N, există α1, · · · , αn ∈ C şi există u0, u1, · · · , un ∈ R(w) aşa
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fel ı̂ncât

F (w, z) =
n∑
k=1

αk · log(uk(w, z)) + u0(w, z).

Derivând relaţia de mai sus după variabila w obţinem:

∂F

∂w
=

n∑
k=1

αk ·
1

uk
· ∂uk
∂w

+
∂u0

∂w
.

Deoarece uk sunt funcţii raţionale ı̂n w,
∂uk
∂w

sunt de asemenea raţionale ı̂n

w şi deci
∂F

∂w
∈ R(w). Pe de altă parte,

d

dz
F (w(z), z) = A0(z) ·w(z) +A1(z) =

∂F

∂w
(w(z), z) ·w′(z) +

∂F

∂z
(w(z), z) =

=
∂F

∂w
(w(z), z) · p(z) +

∂F

∂z
(w(z), z)

de unde rezultă că
∂F

∂z
∈ R(w). Rezultă deci că

∂F

∂w
,
∂F

∂z
∈ R(w).

Din relaţia precedentă rezultă

(1) A0 · w + A1 =
∂F

∂w
· p+

∂F

∂z
.

Deoarece w este transcendent peste R relaţia (1) este o identitate ı̂n w (altfel
(1) ar conduce la o ecuaţie polinomială ı̂n w cu coeficienţi din R ceea ce ar
nega transcendenţa lui w). Deci

(2) A0(z) · w(z) + A1(z) ≡w
d

dz
F (w(z), z).

Din (2) rezultă că, oricare ar fi γ ∈ C,

(3) A0(z)[w(z) + γ] + A1(z) =
d

dz
F (w(z) + γ, z)
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sau, integrând după z de la c0 ∈ C la z ∈ C,

(4)

∫ z

c0

{A0(z) [w(z) + γ] + A1(z)} dz = F (w(z) + γ, z)− F (w(c0) + γ, c0).

Notăm −F (w(c0) + γ, c0) = c(γ) şi deci

(5)

∫ z

c0

{A0(z) [w(z) + γ] + A1(z)} dz = F (w(z) + γ, z) + c(γ).

Derivăm relaţia (5) după γ de două ori şi obţinem pe rând

(6)

∫ z

c0

A0(z)dz =
∂F

∂w
(w(z) + γ, z) + c′(γ),

(7) 0 =
∂2F

∂w2
(w(z) + γ, z) + c′′(γ).

Dacă ı̂n (7) facem γ = 0 şi notăm c = −c′′(0) ∈ C, obţinem

(8)
∂2F

∂w2
(w, z) = c.

Din (8) rezultă că există a1 : D → C aşa fel ı̂ncât

(9)
∂F

∂w
(w, z) = c · w + a1(z)

şi cum
∂F

∂w
∈ R(w) iar w este transcendent peste R, relaţia (9) este o iden-

titate ı̂n w. Rezultă că dacă ı̂n (9) ı̂i dăm lui w o valoare constantă w0,

a1(z) =
∂F

∂w
(w0, z)− c · w0 ∈ R.

Observăm că membrul ı̂ntâi din relaţia (6) nu depinde de γ şi deci

(6′)

∫ z

c0

A0(z)dz =
∂F

∂w
(w, z) + c′(0).

Înlocuim (9) ı̂n (6′) şi obţinem

(10)

∫ z

c0

A0(z)dz = c · w(z) + a1(z) + c′(0)
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sau, dacă notăm a(z) = a1(z) + c′(0), atunci a ∈ R şi

(11)

∫ z

c0

A0(z)dz = c · w(z) + a(z).

Derivând relaţia (11) după z, rezultă

(12) A0(z) = c · p(z) + a′(z), unde c ∈ C şi a ∈ R.

Rezultă atunci că

F (w, z) =

∫
[c · p(z) · w(z) + a′(z) · w(z) + A1(z)] dz =

=
c

2
· w2(z) + a(z) · w(z) +

∫
[A1(z)− a(z) · p(z)] dz.

Să notăm acum

H(w, z) =

∫
[A1(z)− a(z) · p(z)] dz = F (w, z)− c

2
· w2(z)− a(z) · w(z).

Atunci H este elementară ı̂n raport cu R(w) şi, aplicându-i acestei funcţii
principiul Laplace-Liouville, există m ∈ N, există β1, · · · , βm ∈ C şi există
v0, v1, · · · , vm ∈ R(w) aşa fel ı̂ncât

(13) H(w, z) =
m∑
k=1

βk · log(vk(w, z)) + v0(w, z).

La fel cum am demonstrat pentru funcţia F obţinem:

∂H

∂w
,
∂H

∂z
∈ R(w)

şi, deoarece w este transcendentă ı̂n raport cu R, relaţia următoare (obţinută
prin derivarea după z a lui H)

(14) A1(z)− a(z) · p(z) =
∂H

∂w
(w, z) · p(z) +

∂H

∂z
(w, z)

este o identitate ı̂n w şi deci, pentru orice γ ∈ C,

(15) A1(z)− a(z) · p(z) =
d

dz
H(w(z) + γ, z).
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Integrăm această relaţie după z de la c0 ∈ C la z ∈ C şi obţinem

(16)

∫ z

c0

[A1(z)− a(z) · p(z)]dz = H(w(z) + γ, z)−H(w(c0) + γ, c0)

sau, notând −H(w(c0) + γ, c0) = c1(γ),

(17)

∫ z

c0

[A1(z)− a(z) · p(z)]dz = H(w(z) + γ, z) + c1(γ).

Derivăm acum (17) după γ şi obţinem

(18) 0 =
∂H

∂w
(w + γ, z) + c′1(γ).

Fie acum c1 = −c′1(0) ∈ C; din (18) rezultă deci

(19)
∂H

∂w
(w, z) = c1

de unde rezultă că există o funcţie A : D → C aşa fel ı̂ncât

(20) H(w, z) = c1 · w + A(z).

Funcţia H(w, z)− c1 · w = A(z) nu depinde de w şi deci A(z) = H(w0, z)−
c1 · w0, unde w0 este fixat ı̂n C. Din relaţile (13) şi (20) deducem că

A(z) =
m∑
k=1

βk · log(vk(w0, z) + v0(w0, z)− c1 · w0.

Deoarece funcţiile v0(w0, ·), · · · , vm(w0, ·) ∈ R rezultă că A este funcţie ele-
mentară ı̂n raport cu R.

Observăm că membrul ı̂ntâi din relaţia (17) nu depinde de γ şi deci

(21)

∫
[A1(z)− a(z) · p(z)]dz = H(w, z) + c1(0).

Derivând ultima relaţie după z obţinem

A1(z)− a(z) · p(z) = c1 · p(z) + A′(z), sau

(22) A1(z) = (a(z) + c1) · p(z) + A′(z).
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Se observă acum că putem renota cu a funcţia a + c1 şi obţinem din nou o
funcţie din R astfel ı̂ncât{
A0(z) = c · p(z) + a′(z),
A1(z) = a(z) · p(z) + A′(z),

unde A este elementară ı̂n raport cu R.

Suficienţa. Presupunem că există c ∈ C, a ∈ R şi A elementară ı̂n raport
cu R astfel ı̂ncât să fie verificate condiţiile teoremei. Atunci∫

[A0(z)·w(z)+A1(z)]dz =

∫
[c·p(z)·w(z)+a′(z)·w(z)+a(z)·p(z)+A′(z)]dz

=
c

2
· w2(z) + a(z) · w(z) + A(z)

şi deci primitiva lui A0(z) · w(z) +A1(z) este elementară ı̂n raport cu R(w).
Putem remarca imediat că această primitivă este chiar ı̂n R(w) dacă şi

numai dacă A ∈ R.
�

4.3.2 Exemple. (i) Se consideră integrala:

F (w, z) =

∫ [(
1

z
+

2

(z + 1)2

)
· w(z) +

(
z − 1

z(z + 1)
+

2

z
+ z

)]
dz,

unde
a). w(z) = log z sau
b). w(z) = arctgz.
Se observă că, dacă notăm A0(z) = 1

z
+ 2

(z+1)2
şi A1(z) = z−1

z(z+1)
+ 2

z
+ z,

A0, A1 ∈ R, unde R notează corpul Liouville al funcţiilor raţionale (vezi
exemplul 4.1.8). În ambele cazuri w este transcendent ı̂n raport cu R şi
w′ = p ∈ R (̂ın cazul a) w′(z) = 1

z
iar ı̂n cazul b) w′(z) = 1

z2+1
).

Observăm de asemenea că a doua condiţie din teorema precedentă, A1 =
a · p + A′ conduce la A′ = A1 − a · p ∈ R (a ∈ R din prima condiţie).
Deoarece A′ este o funcţie raţională A va fi o funcţie elementară faţă de R
(primitiva oricărei funcţii raţionale este o combinaţie de funcţii raţionale,
funcţii logaritm şi arctangente şi deci aparţine unei extensii elementare ale
lui R).

Rezultă că integrala va fi elementară faţă de R(w) dacă şi numai dacă
putem găsi un număr complex c şi o funcţie a ∈ R aşa fel ı̂ncât A0(z) =
c · p(z) + a′(z).

În cazul a) ultima relaţie revine la

1

z
+

2

(z + 1)2
=
c

z
+ a′(z).
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Se observă că, dacă ı̂n relaţia de mai sus alegem c = 1, obţinem a(z) =

− 2

z + 1
+ c1 şi deci a ∈ R. Putem determina atunci şi A din relaţia

A′(z) =
z − 1

z(z + 1)
+

2

z
+ z +

(
2

z + 1
− c1

)
· 1

z
=

3− c1

z
+ z.

Dacă c1 = 3 rezultă că A(z) =
z2

2
. Se observă că A ∈ R şi că primitiva este

dată de

F (w(z), z) =
1

2
· w2(z) +

3z + 1

z + 1
· w(z) +

z2

2
.

Remarcăm că F (w, ·) ∈ R(w).
În cazul b) obţinem relaţia

1

z
+

2

(z + 1)2
=

c

z2 + 1
+ a′(z)

de unde

a(z) = log z − 2

z + 1
− c · arctgz.

Observăm că, indiferent ce valoare dăm lui c ∈ C, a /∈ R. Rezultă că integrala
nu este elementară faţă de R(arctg).

(ii) Să considerăm integrala:

F (w(z), z) =

∫ [(
1

z
+ z · ez2

)
· w(z) +

1

2z
· ez2 + 1

]
dz,

unde w(z) = log z.
Dacă notăm cu A0(z) = 1

z
+ z · ez2 şi cu A1(z) = 1

2z
· ez2 + 1 observăm că

A0, A1 ∈ R1 = R
(
ez

2
)

, unde R este corpul funcţiilor raţionale iar R1 este

extensia Liouville a acestuia cu transcendenta ez
2
. Vrem să verificăm dacă

F (w, ·) este elementară faţă de R1(w). Condiţiile din teorema precedentă se
scriu:

1

z
+ z · ez2 =

c

z
+ a′(z)

1

2z
· ez2 + 1 =

a(z)

z
+ A′(z).

Din prima condiţie, considerând c = 1 obţinem a(z) = 1
2
· ez2 . Înlocuind ı̂n

condiţia a doua pe a obţinem A(z) = z şi deci integrala:

F (w(z), z) =
1

2
· log2 z +

1

2
· ez2 · log z + z.
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Integrarea unui polinom ı̂n w

4.3.3 Teoremă. Fie R un corp Liouville pe domeniul D ⊆ C, fie p ∈ R
aşa fel ı̂ncât w(z) =

∫
p(z)dz defineşte un element transcendent peste R şi

fie A0, A1, · · · , An ∈ R.

Condiţia necesară şi suficientă ca

∫ n∑
k=0

Ck
n ·Ak(z)·wn−k(z)dz să definească o

funcţie elementară ı̂n raport cu R(w) este ca să existe B0 = c ∈ C, B1, · · · , Bn

∈ R şi Bn+1 elementară ı̂n raport cu R astfel ı̂ncât:

A0(z) = c · p(z) +B′1(z)

A1(z) = B1(z) · p(z) +
1

2
·B′2(z)

· · · · · · · · · · · ·
An(z) = Bn(z) · p(z) +

1

n+ 1
·B′n+1(z).

În acest caz∫ n∑
k=0

Ck
n · Ak(z) · wn−k(z)dz =

1

n+ 1
·
n+1∑
k=0

Ck
n+1 ·Bk(z) · wn+1−k(z).

Integrala de mai sus defineşte o funcţie din R(w) dacă şi numai dacă
Bn+1 ∈ R.

mi Demonstraţie. Reamintim că, deoarece w′ = p ∈ R ⊆ R(w), cel mai

mic corp Liouville care conţine R şi w este R(w) =

{
P (w)

Q(w)
: P,Q ∈ R(X)

}
(teorema 4.1.9).
Necesitatea. Presupunem că

F (w, z) =

∫ n∑
k=0

Ck
n · Ak(z) · wn−k(z)dz

este elementară ı̂n raport cu R(w). Principiul lui Laplace-Liouville ne asigură
existenţa unui număr natural m ∈ N, a m numere complexe α1, · · · , αm ∈ C
şi a m+ 1 funcţii u0, u1, · · · , um ∈ R(w) aşa fel ı̂ncât

F (w, z) =
m∑
k=1

αk · log(uk(w, z)) + u0(w, z).
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Rezultă atunci că
∂F

∂w
=

m∑
k=1

αk
uk
· ∂uk
∂w

+
∂u0

∂w
.

Deoarece funcţiile uk sunt raţionale ı̂n variabila w,
∂uk
∂w
∈ R(w), de unde

rezultă că
∂F

∂w
∈ R(w). Pe de altă parte

n∑
k=0

Ck
n · Ak(z) · wn−k(z) =

d

dz
F (w(z), z) =

∂F

∂w
· p+

∂F

∂z

de unde rezultă că
∂F

∂z
∈ R(w).

Deoarece w este transcendent peste R următoarea relaţie este o identitate
ı̂n w:

(1)
n∑
k=0

Ck
n · Ak(z) · wn−k =

∂F

∂w
(w, z) · p(z) +

∂F

∂z
(w, z).

Deci

(2)
n∑
k=0

Ck
n · Ak(z) · wn−k(z) ≡w

d

dz
F (w(z), z).

În relaţia (2) ı̂nlocuim w cu w + γ şi obţinem

(3)
n∑
k=0

Ck
n · Ak(z) · (w + γ)n−k =

d

dz
F (w + γ, z),∀γ ∈ C.

Integrăm ı̂n (3) de la c0 ∈ C la z ∈ C

(4)

∫ z

c0

n∑
k=0

Ck
n ·Ak(z) · [w(z) + γ]n−kdz = F (w(z) + γ, z)−F (w(c0) + γ, c0).

Notăm −F (w(c0) + γ, c0) = c(γ) şi obţinem

(5)

∫ z

c0

n∑
k=0

Ck
n · Ak(z) · [w(z) + γ]n−kdz = F (w(z) + γ, z) + c(γ).
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Derivând relaţia (5) de n− 1 ori după γ obţinem

(6)

∫ z

c0

n![A0(z)(w(z) + γ) + A1(z)]dz = F
(n−1)

wn−1 (w + γ, z) + c(n−1)(γ).

În relaţia (6) facem γ = 0 şi notăm c(n−1)(0) = c ∈ C.

(7)

∫ z

c0

n![A0(z) · w(z) + A1(z)]dz = F
(n−1)

wn−1 (w, z) + c.

Deoarece F
(n−1)

wn−1 ∈ R(w) rezultă că
∫ z
c0
n![A0(z) · w(z) + A1(z)]dz ∈ R(w)

şi atunci, utilizând rezultatul stabilit ı̂n teorema precedentă, există c ∈ C,
există b1, b2 ∈ R aşa fel ı̂ncât

A0(z) =
1

n!
· c · p(z) + b′1(z)

A1(z) =
1

n!
· b1(z) · p(z) + b′2(z) şi∫ z

c0

n![A0(z) · w(z) + A1(z)]dz =
c

2
· w2(z) + b1(z) · w(z) + b2(z).

Deci

F
(n−1)

wn−1 (w, z) =
c

2
· w2(z) + b1(z) · w(z) + b2(z).

Dacă ultima relaţie o integrăm după w obţinem

F
(n−2)

wn−2 (w, z) =
c

3!
· w3(z) +

b1(z)

2
· w2(z) + b2(z) · w(z) + b3(z).

Deoarece F
(n−2)

wn−2 ∈ R(w) şi w este transcendent peste R relaţia de mai sus
este o identitate şi deci, dând lui w o valoare constantă w0, obţinem b3 ∈ R;
ş.a.m.d.

După n− 2 integrări succesive obţinem:

F ′w(w, z) =
c

n!
· wn +

b1(z)

(n− 1)!
· wn−1 + · · ·+ bn−1(z)

1!
· w + bn(z)

şi, cu acelaşi argument de mai sus, bk ∈ R, ∀k = 1, · · · , n.
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Vom nota acum Bk =
k!

n!
· bk,∀k = 0, · · · , n, unde b0 = c ∈ C; atunci

B0, B1, · · · , Bn ∈ R şi

(8) F ′w(w, z) =
n∑
k=0

Ck
n ·Bk(z) · wn−k(z).

Dacă integrăm relaţia (8) ı̂ncă o dată obţinem

(9) F (w, z) =
n∑
k=0

Ck
n ·Bk(z) · 1

n− k + 1
· wn−k+1(z) +

1

n+ 1
·Bn+1(z) =

=
1

n+ 1
·
n+1∑
k=0

Ck
n+1 ·Bk(z) · wn+1−k(z).

Din relaţia (9), Bn+1 = Φ(w, ·), unde

Φ(w, z) =
m∑
k=1

αk ·log(uk(w, z))+u0(w, z)− 1

n+ 1
·
n+1∑
k=0

Ck
n+1 ·Bk(z)·wn+1−k(z).

Deoarece Φ′w ≡ 0 (relaţia (8) este o identitate ı̂n w), Φ(w, z) = Φ(w0, z) de
unde rezultă că

Bn+1(z) =
m∑
k=1

αk·log(uk(w0, z)+u0(w0, z)−
1

n+ 1
·
n+1∑
k=0

Ck
n+1·Bk(z)·wn+1−k

0 (z),

ceea ce arată că Bn+1 este elementară ı̂n raport cu R.
Din (9) rezultă∫ n∑

k=0

Ck
n · Ak(z) · wn−kdz =

1

n+ 1
·
n+1∑
k=0

Ck
n+1 ·Bk(z) · wn+1−k.

Derivăm relaţia de mai sus după z şi obţinem

(10)
n∑
k=0

Ck
n · Ak(z) · wn−k =

1

n+ 1
·
n+1∑
k=0

Ck
n+1 ·B′k(z) · wn+1−k+

+
1

n+ 1
·

n∑
k=0

Ck
n+1 ·Bk(z) · (n+ 1− k) · wn−k · p(z).
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Relaţia (10) este o identitate ı̂n w şi deci putem identifica coeficienţii puterilor
egale ale lui w din cei doi membri; se obţine:

B′0 = 0,
C0
n · A0 = 1

n+1
(C1

n+1 ·B′1 + C0
n+1 ·B0 · (n+ 1) · p)

· · · · · ·
Cn−1
n · An−1 = 1

n+1
(Cn

n+1 ·B′n + Cn−1
n+1 ·Bn−1 · 2 · p)

Cn
n · An = 1

n+1
(Cn+1

n+1 ·B′n+1 + Cn
n+1 ·Bn · p)

Din relaţiile de mai sus rezultă imediat condiţiile cerute ı̂n teoremă.
Se poate uşor remarca din demonstraţia de mai sus că F (w, ·) ∈ R(w)

dacă şi numai dacă Bn+1 ∈ R.
Suficienţa. Presupunem că există n ∈ N, există c = B0 ∈ C, B1, · · · , Bn ∈
R şi Bn+1 elementară ı̂n raport cu R aşa fel ı̂ncât, pentru orice k = 0, · · · , n,

Ak = Bk · p+
1

k + 1
·B′k+1.

Atunci

F (w, z) =

∫ n∑
k=0

Ck
n · Ak(z) · wn−kdz =

=
n∑
k=0

Ck
n

∫ (
Bk(z) · p(z) +

1

k + 1
·B′k+1(z)

)
· wn−kdz =

=
c

n+ 1
· wn+1 +

n∑
k=1

Ck
n ·
∫
Bk(z) · p(z) · wn−kdz+

+
n+1∑
k=1

Ck−1
n · 1

k
·
∫
B′k(z) · wn+1−kdz =

c

n+ 1
· wn+1+

+
n∑
k=1

(
Ck
n ·
∫
Bk(z) · p(z) · wn−kdz +

1

n+ 1
· Ck

n+1 ·
∫
B′k(z) · wn+1−kdz

)
+

+
1

n+ 1
·Bn+1(z) =

c

n+ 1
· wn+1 +

n∑
k=1

(
Ck
n ·
∫
Bk(z) · p(z) · wn−kdz+

+
1

n+ 1
· Ck

n+1 ·Bk(z) · wn+1−k−
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−n+ 1− k
n+ 1

· Ck
n+1 ·

∫
Bk(z) · p(z) · wn−kdz

)
+

1

n+ 1
·Bn+1(z) =

=
1

n+ 1
·
n+1∑
k=0

Ck
n+1 ·Bk(z) · wn+1−k.

Se observă că F (w, ·) este elementară ı̂n raport cu R(w).
�

4.3.4 Exemplu. Să considerăm integrala∫ (
z2 · w2 +

z

z + 1

)
dz.

Dacă notăm cu A0(z) = z2, A1(z) = 0 şi A2(z) =
z

z + 1
, atunci funcţiile

A0, A1 şi A2 aparţin corpului R al funcţiilor raţionale. Să presupunem că
w(z) = log z; w este o transcendentă peste R. Relaţiile din teorema prece-
dentă se scriu ı̂n cazul nostru:

z2 =
c

z
+B′1(z)

0 =
B1(z)

z
+

1

2
·B′2(z)

z

z + 1
=
B2(z)

z
+

1

3
·B′3(z).

Deducem din relaţiile de mai sus:

c = 0

B1(z) = z3

3

B2(z) = −2z3

9

B3(z) = 3z + 2
9
z3 − 3 log(z + 1).

Se observă că B0, B1, B2 ∈ R iar B3 este elementar faţă de R. Rezultă că
integrala este elementară faţă de R(w) şi că∫ (

z2 · w2 +
z

z + 1

)
dz =

1

3
·z3 · log2 z− 2

9
·z3 · log z− log(z+1)+z+

2

27
·z3.

Remarcăm că integrala nu aparţine lui R(w).
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