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Introducere






Capitolul 1

Corpul numerelor reale

Corpul numerelor reale este un corp comutativ total ordonat (R, +,-, <) in
care orice multime nevida si marginita superior are margine superioara. Pe
acest corp putem sa definim norma modul cu ajutorul relatiei de ordine:
mod : R — R, definita prin

x, dacax >0

—x, dacaxz <0 VT €R.

mod(z) = {
Aceasta norma este compatibila cu structura de corp a lui R, adica indepli-
neste proprietatile:

1). mod(z) =0« 2 =0,

2). mod(z 4+ y) < mod(z) + mod(y), Vz,y € R.

3). mod(x - y) = mod(z) - mod(y),Vz,y € R,

Stim ca (R, mod) este un spatiu normat complet. Acest spatiu este com-
pletat al subcorpului numerelor rationale Q@ (rezultatul este consecinta a
modelului lui Cantor, model in care construiegte R ca si completat al lui Q).
Ne putem pune intrebarea daca pe Q mai exista si alte norme de corp si, in
cazul unui raspuns afirmativ, ce se obtine prin completarea lui Q in raport
cu astfel de norme.

In acest capitol vom determina si vom clasifica toate normele de corp
pe multimea numerelor rationale. Vom demonstra teorema de clasificare a
lui Ostrowski care afirma ca singura norma arhimediana de corp pe Q este
norma modul si drept norme ne-arhimediene putem gasi norma triviala si
normele p-adice. In al doilea paragraf al capitolului vom construi modelul
ne-arhimedian al multimii numerelor reale prin completarea lui Q in raport
cu o norma p-adica.
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1.1 Corpuri normate

Vom incepe acest paragraf cu cateva rezultate generale despre corpurile nor-
mate.

1.1.1 Definitie. Fie (K, +,-) un corp comutativ; vom nota cu 0 si respec-
tiv 1 elementele neutre ale lui K in raport cu operatiile de adunare si de
inmultire. In cele ce urmeazi 0 si 1 vor nota elementele neutre de la adunare
si de la inmultire respectiv pe multimea numerelor reale R.

O norma de corp pe K este o aplicatie |- | : K — R, care verifica
proprietatile urmatoare de compatibilitate cu structura de corp:

). |z =0 2=0,

2). |z +y| < |z + |yl Vo, y € K,

3). |-yl = x| |yl,Vz,y € K.

Perechea ordonata (K, |-|) formata dintr-un corp comutativ K gi o norma
de corp | - | pe K se numeste corp normat.

1.1.2 Observatii. (i). Prezentam cateva consecinte imediate ale definitiei
de mai sus, lasand demonstratiile pe seama cititorilor.

L. | —z| = |z|,Vz € K,

2 fa 1| = v € K\ o)

3.1 = 1.

(ii). Nu trebuie confundata notiunea de norma de corp cu aceea de norma
pe un spatiu vectorial. Proprietatile 1). si 2). din definitia de mai sus sunt
comune insa proprietatea a treia diferentiaza net cele doua notiuni, aga cum
vom putea observa din cele ce urmeaza. Totusi, ca si normele pe spatii
vectoriale, normele de corp permit constructia unor metrici.

1.1.3 Definitie. Fie (K, |- |) un corp normat; aplicatia dj : K x K — R}
definita prin dj|(z,y) = |z —y|, Yo,y € K este o metrica pe K; dj,| se va numi
metrica indusa de norma | - | iar topologia indusa de aceasta metrica, T4,
se va nota cu 7}, si se va numi topologia indusa de norma de corp | - |.

1.1.4 Definitie. Fie K un corp comutativ; doua norme de corp pe K, |- |;
si |- |2, se numesc norme echivalente daca topologiile induse de cele doua
norme coincid: 7y, = 7}.,,; vom nota aceasta situatie cu | - [y ~ | - |2.
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O prima diferenta intre normele de spatii vectoriale si cele de corpuri o
putem remarca din teorema urmatoare in care se caracterizeaza normele de
corp echivalente.

1.1.5 Teorema. Fie |- |; $i|- |2 doud norme de corp pe K; urmatoarele
afirmatic sunt echivalente:

Do~ ]2

2) |l‘|1 <l&e |IL‘|2 < 1,

3). 3 a> 0 asa fel incat |z|; = |x|$,Vr € K.

Demonstratie. |1) = 2)|: Presupunem ca |- |; ~ |- | si fie z € K
sirul (2")nen- este convergent in raport cu topologia 7., = 7 la 0 daca si
numai daca |z|} — 0 ceea ce este echivalent cu a spune ca |z|; < 1. Deoarece
T| = Ty = T|.|,, Tezultd ca:

{reK:|jzh<1}={zeK:2" 50} =

={reK: 2" B0 ={recK:l|rj;<1}

ceea ce incheie demonstratia acestei implicatii.
2)=3)|: a). Daca Vx € K* = K \ {0},|z]; = 1, atunci avem si

2|, = 1,Vz € K* si deci 3). este verificati cu orice a > 0. Intr-adevir, daci
ar exista un € K* a.d. |z|y # 1 atunci sau |z]y < 1 si deci, din 2), |z|; < 1,
ceea ce este absurd, sau |z|, > 1 deci |27y < 1 si deci |27, < 1, ceea ce
este iaragi absurd.

b). Sa presupunem acum ca Ja € K* ai. |a|; # 1. Putem presupune
fara sa restrangem generalitatea ca |a|; > 1.

In |z
Ve e K*,36 = 2l g 12|, = |al?.
In |aly
n m
Acum, Vn,m € Z cu ;- > 3, |z[1 < a|{" sau, echivalent, |—| < 1; rezulta
a
atunci din 2) ca |—| < 1 sau echivalent |z|s < |a|5*. Cum — este un numar
an |, m

rational arbitrar mai mare decét § rezultd ci |z|, < |al5.
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Rationam similar pentru numere rationale mai mici decat J si obtinem si
In ‘.T’Q

inegalitatea inversa si deci |z]s = |al5. Atunci 8 = si deci

ln\alg

In|zly  In|z|

Inlal, Inlal;’

In |aly

Deci |z|y = |z|¢ unde o = |,

3) = 1)|: Unsir (z,), C K este convergent in raport cu |- |; laz € K

daca si numai daca |z, — x|y = |z, — x|$ — 0 gi deci daca si numai daca
(x,)n este convergent la = in raport cu norma | - |3. Topologiile generate de
cele doua norme au aceleagi siruri convergente si deci coincid. .
1.1.6 Corolar. Daca normele de corp |- |1 i |- |2 pe K sunt echivalente
atunci: x| =1 < |z = 1.

1.1.7 Observatie. Remarcam ca, daca doua norme de corp sunt echiva-
lente, sferele cu centrul in origine de raza 1 au aceeasi “coaja”’. Normele
de spatii vectoriale nu au aceasta proprietate geometrica. Ne reamintim

de exemplu ca pe R* norma euclidians ||z||y = y/2? + 23 si norma ||z||; =

21|+ @), V& = (21, 22) € R? sunt echivalente. Insd, in timp ce “coaja” sferei
unitate pentru prima este un cerc cu centrul in origine, “coaja’ sferei unitate
pentru a doua este un patrat cu centrul in origine si cu laturile paralele cu
cele doua bisectoare.

1.1.8 Definitie. Fie K un corp comutativ si fie K intersectia tuturor sub-
corpurilor lui K; Kj se numeste corpul prim al corpului K.

Pentru orice k e N* k-1=1+---+1iar 0-1=0; daca k € Z \ N atunci

|

k—ori
k-1=—(—k-1). Evident, {k-1: k € Z} C K,. Aplicatia ¢ : Z — Ky,
definita prin p(k) = k- 1,Vk € Z, este un homomorfism de inele. Deoarece
K este corp, subinelul (Z) C Ky nu are divizori ai lui 0 i astfel nucleul
homomorfismului ¢, ker ¢ = {k € Z : k-1 = 0} este un ideal prim in Z (ker ¢
= ideal: VI € Z,Vk € kerp,l - k € ker p; ker p = ideal prim: Vk,l € Z cu
k-1 € ker sau k € ker p sau [ € ker ). Avem doua situatii posibile:
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L. Daca ker p = {0} atunci ¢ este injectie si deci un izomorfism de inele
intre Z si (7). Atunci corpul prim K, contine un inel izomorf cu Z si deci
Ky contine un corp izomorf cu Q. Cum K este cel mai mic sub-corp al lui
K, Ko =Q.

II. Daca ker¢ # {0} atunci exista un n € Z* al. n-1 = 0; fie n =
pit - - p% descompunerea unica a lui n in factori primi. Deoarece ker ¢ este
ideal prim, exista un numar prim p a.l. p-1 = 0. Pentru orice alt numar prim
q diferit de p exista m,n € Z ai. m-p+n-q=1. Atunci (m-p+n-q)-1=1
de unde n - ¢ # 0. Astfel p este unicul numar prim care se gaseste in ker (.
Rezulta atunci ca ker p =p-Z de unde Ko = Z, = Z/pz.

Concluzia acestei analize o fixam in urmatorul corolar.

1.1.9 Corolar. Corpul prim al unui corp comutativ este sau corpul nu-
merelor rationale sau un corp de clase de resturi modulo un numar prim.

Corpuri ne-arhimediene

1.1.10 Definitie. O norma |- | pe un corp K se numeste norma ne-
arhimediana sau ultrametrica daca verifica conditiile 1) si 3) din definitia
1.1.1, dar, in locul conditiei 2), verifica conditia mai tare:

2. |z +y| < max{|z|, |y|},Vz,y € K.

Daca | - | este o norma ne-arhimediana pe corpul K atunci spunem ca
(K,|-|) este un corp ne-arhimedian sau ultrametric.

O norma de corp |-| pe K care nu este ne-arhimediana se numegte norma
arhimediana iar (K, |-|) se numeste corp arhimedian. Astfel o norma |- |
pe K este arhimediana daca verifica conditiile 1),2) si 3) din definitia 1.1.1
si exista doua elemente z,y € K pentru care:

|z + y| > max{|z|,[yl}.

1.1.11 Exemple. (i) Fie K un corp comutativ arbitrar; definim
|-]o: K = Ry prin

0, x=0
|J]|0—{1’ Q?EK\{Q} ,VQJGK.

Atunci | - | este o norma ne-arhimediana pe K.
Aceasta norma se numeste norma triviala pe K.
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n-_

(ii) Fie p un numar prim; Vo € Q" exista un unicn € Z ai. x = p 7

unde a,b € Z* sunt doua numere prime cu p. Definim atunci
1 L
|I|p:ﬁ:p si 0], = 0.

Aplicatia | - |, : Q — R este o norma ne-arhimediana pe Q.
Intr-adevar, conditia 1) din definitia 1.1.1 este evident indeplinita; fie

c
acum un alt element y = p™ - = € Q" unde ¢,d € Z* sunt prime cu p.

d
ad + p™"bc

Presupunem ca n < m; atunci x +y = p" b . Deoarece ad+p™ "bc

si bd sunt prime cu p,

T +y|, = — = max , = max{|z|,, ly|,}.
p pn pn’ pm p p

Daca n > m se rationeaza similar.

9 . ad + be o . e
Dacan = m atunci x+y = p"T; atunci exista l > n ad. x+y = pl@

unde e si bd sunt prime cu p. Rezulta ca

o +ylp =p™" <p7" = max{|z|, [yl,}.

ac

In sfarsit si verificim conditia 3) a definitiei 1.1.1; -y = p™*" i

si, cum

ac si bd sunt prime cu p,
|z - ylp, = W = [z[p - [ylp-

Normele |- |, se numesc norme p-adice pe Q.
(iii) Norma modul pe R este o norma arhimediana de corp.

1.1.12 Observatie. Folosind proprietatile 1. si 3. date in cadrul punctului
(i) al observatiei 1.1.2, rezulta ca, intr-un corp ne-arhimedian (K, | - |),

k-1 < 1,Vk € Z.

Vom arata, in teorema urmatoare, ca aceasta proprietate caracterizeaza nor-
mele ne-arhimediene pe un corp.
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1.1.13 Teorema. Un corp normat (K,|-|) este ne-arhimedian dacd si
numai dacd |n-1| <1,Vn € N.

Demonstratie. Necesitatea conditiei a fost deja anuntata in observatia

precedenta. intr—adevér, daca norma | - | este ne-arhimediana atunci, pentru
oricen €N, [n-1|=|1+---+1| <max{|1],---,|1|]} = 1.
—_—

n ori

Sa presupunem acum ca |n-1| < 1,Vn € N; Vz,y € K,Vn € N,
[z +yl" =[x +y)" | = 2"+ Cp "y b Oyt <

< "+ |CE 1|2y A (O Y| < e |yl Ay <
< (n+1)- max{|z|, |y}",

de unde
1z 4+ y| < (n+ 1) - max{|z], |y|}, Vn € N.

Daca in relatia de mai sus facem n — 400 obtinem:
|z +y| < max{|z], [y|}, Vo, y € K.

Aceasta arata ca norma | - | este ne-arhimediana. .
1.1.14 Corolar. (K,|-|) este corp arhimedian daca si numai dacd exista
no € N asa fel incat |ng - 1| > 1.

1.1.15 Observatii. (i) Cu notatiile din corolarul precedent, observam ca
Ing - 1| = [(no - 1)?| = |no - 1| —— +o0. Rezultd cd un corp normat
p—>00

(K,|-]|) este arhimedian daca si numai daca multimea N-1 = {n-1:n € N}
(“numerele naturale” ale lui K') este nemarginita superior in norma.

(ii) Daca corpul prim al lui K este un corp de clase de resturi modulo
numarul prim p (vezi corolarul 1.1.9) atunci orice norma de corp pe K este
ne-arhimediana.

Intr-adevir, in acest caz, N-1 = {n-1:neN}={0,1,---,(p—1) -1}
este o multime finita si astfel nu poate fi nemarginita in nici-o norma | - | pe
K. Observatia de mai sus ne asigura ca | - | este ne-arhimediana.
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Clasificarea normelor pe Q

Teorema urmatoare da o caracterizare completa a normelor de corp pe Q.

1.1.16 Teorema (teorema lui Ostrowski).
a). Daca |- | este o norma arhimediana pe Q atunci exista o € (0,1] a.1.

|z| = (mod(x))®, Vz € Q.

b). Daca |- | este o norma ne-arhimediand pe Q atunci sau | - | este norma
triviala sau exista o > 0 i un numar prim p asa fel incat

2| = |z];, Vo € K.
Demonstratie. In enuntul teoremei “mod” este norma modul pe Q

definita in introducerea acestui capitol, |- |, este norma p-adica pe Q definita
in exemplul 1.1.11, (ii) iar norma triviala este definita in 1.1.11, (i).

a). Fie | - | o norma arhimediana pe Q. Pentru orice = € N,
(1) o L =fo- 1=zl = |14+ <[+ +]l =2

Conform corolarului 1.1.14 existd @ € N ald. |a| > 1; evident ca a > 2.

1
Atunci din (1), |a| < a, de unde, daca notam cu o = nal € (0,1], rezulta
na
(2) la| = a”.
Pentru orice n € N* existd k € N* asa fel incat a* ' < n < d¥; atunci

numarul n admite o scriere in baza a de forma n = z¢ + z1a + - - - Tp_1a* 7,

unde, Vi =0,---k— 1,0 <z; <a—1gi 25—y > 1. Din (1) si (2) rezulta ca

In| < |xo| + |1] - al + -+ + |wpea| - ol < @0+ 210® + - g0V <

« (k—1)a a* —1
<(a—1)-(1+a+---a ):(a—l)-aa_1<
ka _ e} — . q%
< (a_l). @ — (a 1) a .a(kil)a S M.na:A.na
a®—1 a®—1 a® —1

Deci
(3) In| < A-n*VneN.
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Inlocuind in (3) pe n cu n™ obtinem |[n™| = |n|™ < A - n™* de unde
(4) In| < VA n®V¥meN.

Daca in (4) m — +oo,

(5) In| <n® Vn e N.

Fie acum b € N, 0 < b < a* — a*! ai. n = a* — b. Din (2) obtinem

(6) [n| > |a*] — |b] = a™* — |b]
si din (5)
(7) [b] < b < (a* —a"h)",

In sfarsit (6) si (7) ne conduc la

1\
|n|2aka_<ak_akfl)a: |:1_(1__) ‘|_aka:B.aka

a

sau

(8) In| > B - n®.

Din (8), trecand iar n in n™, obtinem |n|™ > B - n™* sau

(9) In| > VB - n°.

Daca in (9) m — 400 ajungem la

(10) In| > n®,Vn € N.

(5) si (10) conduc la

(11) In| =n® = (mod(n))*,Vn € N.
Din (11), Vk € Z \ N,

(12) k] = | = k| = (mod(—k))” = (mod(k))".
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Acum, utilizand (12), Vo =

k
— € Q (unde k € Z,n € N*),
n

1 (mod(k))"

ol =07 = ] oz = (0 (noa (£)) = modtey

b). Fie | - | o norma ne-arhimediana si netriviala; din teorema 1.1.13,
In| < 1,¥n € N. Daca am presupune ca |n| = 1,¥n € N*| atunci, Vz €
Q7, |z| = 1 ceea ce ar insemna ca norma | - | este norma triviala.

Exista deci ng € N* al. 0 < |ng| < 1. Utilizdnd descompunerea lui ng
in factori primi deducem ca exista un numar prim p, a.i. 0 < |p| < 1. Fie
In [p|

o= > 0; atunci
Inp

(13) Ip| =p°.

Oricare ar fi n € Z*, n nedivizibil cu p, exista ¢q,s € Z al. ¢-n+s-p= 1.
Daca presupunem ca |n| < 1, cum |g| < 1 i |s| < 1 rezulta ca

11| = lg-n+s-p| <max{|q||n], |s||p|} <1

ceea ce este absurd.
Deci orice numar n € Z* prim cu p are norma 1. Fie atunci z = p* e Q,
unde m i n sunt prime cu p; rezulta din (13) ca

| = [p|" =p~** = |22

1.1.17 Observatie. Tinand cont de teorema 1.1.5, teorema lui Ostrowski
se poate reformula:

a). Orice norméa arhimediana pe Q este echivalenta cu norma modul.

b). Orice norma ne-arhimediand pe Q este sau norma triviala sau este
echivalenta cu o norma p-adica.

1.2 Corpul numerelor p-adice

Completarea unui corp normat

Vom incepe acest paragraf cu o teorema de completare a corpurilor normate.
Aga cum am mentionat in definitia 1.1.3, pe orice corp normat (K, |- |) se
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poate defini o metrica prin d|.|(z,y) = |* — y|. Daca spatiul metric (K, d|,)
este complet vom spune ca (K, |- |) este un corp normat complet. Daca
nu, dintr-un rezultat de completare a spatiilor metrice (teorema lui Haus-
dorff), spatiul metric (K, d}.|) admite un completat unic pana la o izometrie;
teorema urmatoare arata ca, in cazul corpurilor normate, completatul este
de asemenea un corp normat iar izometria de mai sus este si izomorfism de
corpuri.

1.2.1 Teorema. Pentru orice corp normat (K,|-|) exista un corp normat

complet (l?,| ) si un homomorfism de corpurii : K — K asa fel incat i
este izometrie intre K gi i(K) iar i(K) este dens in K.

Corpul (K.,|-|) este unic pind la un izomorfism izometric de corpuri
normate.

Demonstratie. Vom prezenta numai o schita de demonstratie.
Un sir (z,), C (K, | -|) este sir Cauchy daca |z, — x,,| —— 0.

n,m—+00
Fie K = {(zn)n : (xn)n = sir Cauchy in K}.
Daca K este complet atunci IC coincide cu multimea sirurilor convergente
pe K in acest caz K = K,|-| = || si i va fi aplicatia identicé.
Daca exista siruri Cauchy divergente in K atunci definim pe X doua
operatii prin:

(Tn)n + Wn)n = (@n + Yn)n ST (@n)n - Un)n = (Tn - Yn)n

Cu aceste operatii K este un inel comutativ cu unitate. Multimea O =
{(zp)n : T, — 0} este un ideal maximal in K. Atunci inelul cat K = K/ o este
un corp; un element al acestui spatiu = = [(z,,)] = {(yn)n € K : 2, —yn — 0}.

Fiei: K — K ,i(x) = [Z], unde Z este girul constant cu termenul general
x (i(x) este multimea tuturor girurilor convergente in K la x). Aplicatia ¢
este un homomorfism de corpuri.

Pentru orice Z = [(x,)] € K, (|x,|),, este sir Cauchy in R si deci exista
lim, .o |z,| € R; aceasta limita nu depinde de sirul reprezentant (z,),.
: K — R, prin 1Z]” = limy, 00 |Tn].

Se arata usor ci |- | este o norma de corp pe K si ca i este o izometrie
intre K gi i(K).

Fie 7 = [(z,)] € K;Ve > 0,3ng € N ai Vn,m > no, |Tn — Tm| < £.

. R 2
Atunci elementul |2}, = [Zp,] € i(K) si [T —To| = lim, |1, — 2, < § <e.

Putem defini consistent | -



18 CAPITOLUL 1. CORPUL NUMERELOR REALE

Rezulta ci i(K) = K.

Fie (z7), C (I?, |- [) un sir Cauchy: Ve > 0,3py € N ai. Vp,q > po,
[ZP —79 < £. Cum i(K) este dens In K,VpeN, Jz, € K ad. |i(z,)—77| <
%. Fie p1 > po a.l. % < 5,Vp > p1. Atunci, Vp,q > pi,

|y — | = |i(xp) —i(wg)| < lilay) — TP + (27 — 29 + (27 —i(zy)| <
1 € 1
<-—+5+-<e&
p 3 q

Rezulta ca sirul (x,), C K este sir Cauchy si deci ¥ = [(z,)] € K. In plus

- ~ s NP ~_ 1
7 =2 <[z —i(a)] +|i(zy) =7 <~ +limfz, — 24 — 0.
q p—o0
Deci (K, |-|") este un corp normat complet care confine un subcorp dens ce

este izomorf gi izometric cu K.
Unicitatea se demonstreaza ca si in cazul unicitatii teoremei lui Hausdorff.

|
1.2.2 Definitie. Corpul (K,|-|) construit in teorema precedentd se nu-
mesgte completatul corpului (K| - |); asa cum am observat in teorema,

completatul este unic pana la un izomorfism izometric de corpuri normate.

1.2.3 Observatii. (i) Corpul (K| - |) este ne-arhimedian daca si numai
daca completatul siu (K, |-|) este ne-arhimedian.
Intr-adevar, daca (K, |- |) este ne-arhimedian, atunci, Vz,y € K,Ve >

0,32,y € K ai. |i(z) — 7| <esili(y) -y <e. Atunci
B9 < [F—i(o)+i(@)+ily) — i) +3l < [F-i@)] +r+yl+HF-i)] <

< 2¢ +max{|z|, Jy|} < 2+ max{e +|7| e+ |7 } < 3¢ +max{|7|, 7] }.

Reciproca afirmatiei este evidenta.

(ii) Din teorema 1.1.5, 3) remarcam ca, daca |- |; si |- |2 sunt doua norme
echivalente pe corpul K atunci ele sunt uniform echivalente (au aceleasi siruri
Cauchy). Rezults imediat din demonstratia teoremei anterioare ca |-[; ~ |-/,
pe corpul K = K/o.

Deci completatul lui K in raport cu | - |; este acelagi cu completatul in
raport cu | - | iar normele corespunzatoare lui |- |1 si | - |2 pe acest completat
sunt echivalente.
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(iii) Conform teoremei lui Ostrowski orice norma arhimediana pe Q este
echivalenta cu norma modul. Rezulta din observatia de mai sus ca avem un
singur completat arhimedian al lui Q si acesta este multimea numerelor reale
(vezi modelul lui Cantor pentru multimea numerelor reale).

Orice norma ne-arhimediana este sau norma triviala sau una dintre nor-
mele p-adice. Norma triviala induce pe Q metrica discreta in raport cu care
Q este spatiu metric complet si deci corp normat complet.

In cele ce urmeazd vom construi completatul @Q, al lui Q in raport cu
normele p-adice. Acest completat se numeste corpul numerelor p-adice si
joaca, in analiza ultrametrica, acelagi rol pe care il joaca corpul numerelor
reale in analiza reala.

Fie p un numar prim; urméand exemplul 1.1.11, punctul (ii), Yz € QF,

12

-y . ~ a o .
exista un unic n € Z a.i. x =p" - 7 unde a,b € Z* sunt doua numere prime

cu p. Am definit
1

], = - =p "si

0], = 0.

Aplicatia | - [, : Q — Ry este o norma ne-arhimediana pe Q. Conform teore-
mei 1.2.1 corpul normat (Q, |- |,) admite un completat (@, | - |;) = (Q,, |- p)
unic pana la un izomorfism izometric, completat care este de asemenea corp
ne-arhimedian (vezi observatia 1.2.3, (i)). In cele ce urmeazi ne propunem
sa construim efectiv acest completat plecand de la Q.

Numerele intregi p-adice

Reamintim relatia de congruenta modulo ¢ pe Z; astfel daca ¢ € N,q > 1
definim pe Z urmatoarea relatie binara, numita congruenta modulo ¢: daca
a,b € Z, spunem ca a este congruent cu b modulo ¢ si scriem a = b( mod q)
daca ¢|(a — b) (a — b este divizibil prin q).

Fie atunci

Z={(zp)n €Z: 2, =x,1( modp"),Vn € N*}.

Sa dam exemple de giruri care se gasesc in Z:
1). Fie (x,), C Z,,, = p"™,¥n € N; evident z,, — x,,_; este divizibil cu
p", ¥n € N*. Deci (z,), € Z.
2). Fie (z,,)n, C Z, 2, = 14p+---+p",Vn € N; este evident ca (z,,),, € Z.
3). Orice sir constant z, unde x € Z, este un element din Z.
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Pe multimea Z vom defini o relatie prin:
(Zn)n ~ (Yn)n <= T = yp( mod p"*1),¥n € N.
Se poate usor observa ca ~ este o relatie de echivalenta pe Z.

1.2.4 Definitie. Multimea cat Z/. se numeste multimea intregilor p-
adici si se noteaza cu Z,.

Fie T = [(z,)] € Z,; T este clasa de reprezentant sirul (z,), C Z adica
multimea tuturor girurilor din Z echivalente cu (z,),. Vn € N, notam cu z,
cel mai mic intreg pozitiv cu proprietatea ca

T, = Z,( mod p"t);

este evident ca
0<Z, <p"'VneN

sica
VYn e Nz, =2, =2,1 =Z,_1( mod p").
Atunci (z,,), € Z s
deciz = [(z,)]. Sirul (Z,), se numeste reprezentarea canonica a intregului
p-adic 7.

1.2.5 Propozitie. Dot intregi p-adici coincid daca st numai daca au aceeasi
reprezentare canonica.

Demonstratie. Fie (Z,), reprezentarea canonica a intregului p-adic T si
(Un)n reprezentarea canonica a lui y. Daca ¥ = y atunci (Z,,) ~ (7,) si deci
Tp = Yu( mod p"™),Vn € N. Dar, cum 0 < 7, < p""si 0 < g, < p"*,
Vn € N, rezulta ca z,, = y,,Vn € N. .

Rezulta ca un intreg p-adic este unic determinat de reprezentarea sa
canonica.

1.2.6 Propozitie. Fie (Z,), reprezentarea canonica a intreqului p-adic T;
atunci exista un gir (a,), € N asa fel incat, Vn € N:

Tp=0ay+ap+---+a,p" 10 <a, <p.
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Demonstratie. Deoarece,vVn € N*, z,, = z,_1( mod p"),3a, € Z a..
Ty — Tno1 = app". Dar 0 <z, < p""'si0<z,_1 < p" de unde
—p" < Gpp” < p"tlsau —1 < @, < p. Rezultd ca 0 < a,, < p,Vn € N*. Sa
notam acum ag = g si, observand ca 0 < ag < p, rezulta ca am determinat
sirul (@,), C [0,p)NN ai. Z, = T,_1+a,p", Vn € N*. Din relatia precedenta
rezulta ca T, = ag + a1p+ - - - + a,p",Vn € N. .
1.2.7 Observatie. Remarcam cd Z, este In corespondenta bijectiva cu
multimea sirurilor (z,), de forma z,, = ag + a;p + - - - + a,p™, Vn € N, unde
an, € {0,1,--- ,p—1},¥n € N. Rezulta de aici ca Z, are puterea continuului
(cardinalul lui Z,, este acelasi cu cardinalul lui R, adica c).

1.2.8 Exemple. 1). Fie (x,), € Z,z, = p"™',¥n € Nyi fie T = [(z,)] €
Z,. Reprezentarea sa canonicd este 0 (sirul constant zero). Rezultd ca T =
[0].

2). Fiez = [(z,)] € Zp, unde x,, = 1 +p+ ---+p",Vn € N; dupa
propozitia precedenta este evident ca (x,,), este reprezentarea sa canonica.

3). Fie ¥ = [z] € Z, unde x € Z; daca scriem pe z in baza p obtinem
r=ag+ap+---+ap?, unde a, € {0,1,--- ,p—1}. Construim sirul (Z,),
punand Z = ag+a;p+- - -+appt dacd k < ¢ §i Ty = ag+arp+- - -+ayp?, Vk >
q; atunci (z,), este reprezentarea canonica a lui 7.

Aplicatia i : Z — Z, definita prin i(z) = [Z] este injectia canonica a
multimii numerelor intregi in multimea intregilor p-adici.
Pe Z, definim doua operatii astfel: VZ = [(z,)],¥ = [(yn)] € Zy:

T+y= [0 +yn)l, T-U=[(2n-ya)l

Se poate usor constata ca operatiile sunt consistent definite si ca Z, este
un inel comutativ cu unitate in raport cu aceste doua operatii. Elementul
neutru la adunare este 0 = [0] iar la inmultire 1 = [1].

Aplicatia ¢ definita mai sus devine homomorfism de inele in raport cu
aceste doua operatii.

Fie U C Z, multimea elementelor inversabile fata de operatia de inmul-
tire, adica:

U={7€Z,:Fjel,ai T-7=1}.

Evident ca ¥y este inversul lui Z in inelul Z,.
Teorema urmatoare da o caracterizare a acestor elemente.
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1.2.9 Teorema. 7 = [(z,)] € U <= x¢ # 0( mod p).

Demonstratie. = Fie ¥ = [(z,,)] € U; atunci exista y = [(y,)] € U
al T-7 = 1. Rezulta ca Vn € N,

Ty yp = 1( mod p"T).
In particular zg - yo = 1( mod p) de unde rezulta ca xo Z 0(modp).
<=: Presupunem ca z, #Z 0( mod p); deoarece
r1 = zo( mod p),zys = 1 = 29( mod p), -+ ,z, = -+ = xo( mod p),
rezulta ca

(1) z, Z0( mod p),¥n € N.

1

In particular Vn € N, z, si p"*' sunt prime intre ele si deci exista doua

numere intregi v, si z, a.l.
(2) Y - T+ 2n - p" T =1

Cum z, = z,_1( mod p"), rezulta din relatia precedenta ca
Tp Yn — Tl Yn-1 = (Tn Yo — 1) + (1 — 21 - yn_1) este divizibil prin
p",Vn € N. Deci

(3) Tp  Yn = Tp—1 - yn—l( mod pn)‘

Acum din (3), Ty Yn —Tn-1Yn-1 = T Yn—Tn " Yn-1+Tn Yn-1—Tn-1"Yn-1 =
Tn(Yn—Yn-1)+Yn_1(2n—x,_1) este divizibil cu p"; din (1), z,, nu este divizibil
cu p si, deoarece (), € Z, &, — x,_1 este divizibil cu p". Rezulta atunci ca
Yn — Yn_1 este divizibil cu p™ adica

Yn = Yn—1( mod p"),Vn € N

ceea ce antreneaza (y,), € Z. Fie ¥ = [(yn)] € Z,; relatia (2) spune ca
Ty - Y = 1( mod p"),Vn € N ceea ce inseamnd ca 7 -y = 1. Deci T € U,

1.2.10 Observatii. (i) Daca (Z,), este reprezentarea canonica a lui Z,
atunci zyo # 0( mod p) inseamna zy # 0.

(ii) Daca x € Z atuncii(z) = [Z] € U daca si numai dacap fz (p nu divide
x). Intr-adevar, dupa exemplul 3) din 1.2.8 si din observatia precedenta,
i(x) € U < ag # 0 de unde x = T, nu este divizibil cu p.
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m
(iii) Fie Q' = {— -mEZ,neL cup Xn}, din observatia precedenta
n
T=1i(n)€Usideciexistay € Z, al T -y = 1.

m ~
Vom extinde acum aplicatia de scufundare i la Q" prin — — i(m) - 7.
n

Aplicatia extinsa se va nota tot cu . Astfel interpretam pe 7 ca fiind 7 [ —
n

Aplicatia extinsa este injectiva si pastreaza de asemenea operatiile de
adunare si de inmultire. Vom conveni atunci sa identificam Q' cu i(Q’) si
deci sa consideram deci Q' ca fiind submultime a inelului intregilor p-adici
L.

Teorema urmatoare permite sa reprezentam elementele inelului Z, cu
ajutorul elementelor inversabile.

1.2.11 TeoEemé (teorema de reprezentare a intregilor p-adici). Oricare ar
fiz € Z,\ {0}, exista un numar natural m si un element Ty € U unice asa
fel incat:

m

Tz =7p"- T

Demonstratie. Daca ¥ € U atunci putem lua m = 0 si &y = .

Presupunem acum ca = = [(z,)] ¢ U; atunci xy = 0( mod p). Deoarece
7+#0,9meNadi z, # 0( mod p™*1); si consideram c& m este cel mai mic
numar cu aceasta proprietate. Evident ca m > 0 si ca x,,—1 = 0( mod p™).

T = Tpy—1( mod p™) =z, =0( mod p™),

Tyt = Ton( mod p™t) = 1,1 =0( mod p™),

Tmis = Tmis—1( mod p"*) = x,,,.s = 0( mod p™).

Sirul (z,), este deci de forma

<a0p7 a1p27 R} amflpm7 a’mpm7 a’m+1pm7 e )7
unde a,, [fp.
1
Fie ys = — - s, Vs € N; girul (ys)s este de forma
pm

(ama m+1P, am+2p2> )
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1 1
Vs € N Yy = Yso1 = —(Tmps — Tmys1) = — - a - p™"* este divizibil cu p*

“ 1
si astfel (ys)s € Z. Rezulta ca Ty = [(ys)] € Zp. In plus yp = — - x,,, nu este
pm
divizibil cu p (z,, # 0( mod p™™?)) si astfel 7, € U.

P T = [(Tny, Tona1, -+ 5 Tmpsy -+ + )] §1 deci, Vs € N,

Tmys — Ts = (xm-i-s - $m+s—1) + (xm-i-s—l - xm+s—2z+ R (xs-i-l - xs) )

. J (.

divizibil I),rin pmts divizibil p;irn pmts—1 divizibil prin ps+1
de unde rezulta cd z,,4, = r,( mod p*™'),Vs € N si deci p™ - 7y = 7.
Unicitatea: Sa presupunem ci T = p™-Zy = p* -7, unde Zo = [(ys)], Jo =
[(25)] € U sideci Vs € N,y; # 0( mod p), zs Z 0( mod p). Pe de alta parte,
deoarece p™ - Ty = p* - 1y,

P"ys = PPz mod p*tt), Vs € N.

Daca in relatia de mai sus luam s = m — 1 obtinem ca p™ divide p™y,_1 —
P zm_1, de unde rezultd k > m. Procedam simetric (facem s = k — 1) si
obtinem k < m. Deci k = m.

Acum, Vs € N, p™Ymis = P 2mys( mod p™ 1) de unde rezulta ca
Ym+s = Zers( mod ps+1)'

Pe de altd parte, cum ¥y, = ys( mod p*™) i 2,4 = 2,( mod pt),

rezultd ci y, = z,( mod p*™!),Vs € N, deci Zy = 7. .

1.2.12 Corolar. Z, este domeniu de integritate.

Demonstratie. Presupunem ca exista doua elemente ne-nule ale lui
Lp, T,y al. T Y = 0. Atunci, din teorema de reprezentare de mai sus,
T=p" T siy=0p"To. Rezultid ci p™* - T - Jo = 0. Deoarece To, o € U,
ele sunt elemente inversabile. Inmultim in relatia precedents cu Tyt -7yt s
obtinem p™** .1 =0 de unde rezultd ci sirul constant egal cu p™** trebuie
sa fie echivalent cu girul constant 0. Din definitia relatiei de echivalenta asta
inseamna ca p™** = 0( mod p"*!),¥n € N sau, in particular, trebuie ca
p™tF sa fie divizibil cu p™tF*! ceea ce este absurd. .

Deoarece, conform corolarului precedent, Z, este domeniu de integritate
putem construi corpul sa de fractii Q,; vom nota elementele lui Q,, cu litere
grecesti o, 3,---, iar cu 0 si 1 vom nota elementele neutre la adunare si
respectiv la inmultire din Q,. Cum Z, contine ca sub-inel pe Z, Q, va
contine pe Q ca sub-corp.
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In cele ce urmeazd vom identifica in mod natural Z,, cu o submultime a
corpului sau de fractii Q, si deci vom putea scrie: Z C Q' C Z, C Q, si de
asemenea Q C Q,,.

Urmatorul rezultat este o teorema de reprezentare a elementelor corpului

Qp'

1.2.13 Teorema (teorema de reprezentare a numerelor p-adice). Oricare
ar fia € Q,\ {0}, exista un numar intreg m si un element & € U unice asa
fel incat:

a=p"-T.

Demonstratie. Sa amintim ca, pentru constructia corpului de fractii
al domeniului de integritate Z,, se defineste o relatie de echivalentd pe Z, x Z,,
prin

(Z,9) ~ (u,0) <= T -v=79y-u.

Q, este atunci spatiul cat Z, x Z, /..

Fie acum a = [(7,7)] € Q,,a # 0; atunci 7,y € Z, si deci, din teorema
de reprezentare a intregilor p-adici (teorema 1.2.11), exista m, k € N, exista
33\0,@\0 S U al. /l’\:pm . af\o,i/y\:pk . :/y\o.

m—kz 71 T) daca m > k
Atunci (3.7) = (0™ - Fo. pF - 7o) ~ 4 2" Tl 1), —p 0
unci (m,y) (p Lo, P yo) { (:coyo 17pk—m)’ daca m < k ©

m=k . To- Uy . Demonstratia se incheie daca observam

unde rezulta ca o = p

caTo 7y €U.
Unicitatea rezulta din unicitatea reprezentarii intregilor p-adici si din

constructia corpului de fractii. .
Teorema de reprezentare de mai sus permite definirea unei norme de corp

pe Q,.

1.2.14 Definitie. Fie a € Q,; daca o # 0 exista in mod unic m € Z,7 € U
a.l. a = p™-Z. Definim atunci

p~ ™, daca a # 0,
ol = {

0, dacaa=0.

1.2.15 Teorema. Aplicatia |- |, : Q, — Ry, definita prin o — |, este o
norma de corp ne-arhimedian pe Q,.
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Demonstratie. Este evident din definitie ca |a|, =0 < o = 0.

Fie acum o = p™ - 2,8 =pF -7 € Q, unde m,k € Z,7,y € U.

a-B=p"F.T-ysi,cum -7 €U, |a-Bl, =p ™ = |al, - |5,

a+pf=p"-T+pt-y

1. Sa presupunem intai ca m > k; atunci a + 3 = pF - (p™* . T + 7).
Sa presupunem ca = = [(z,)], ¥ = [(y»)] unde (x,)n, (Yn)n € Z. Din teorema
1.2.9 rezultd ca yo Z 0( mod p) si atunci p™ *zo+yo Z 0( mod p). Rezulta,
in baza aceleiasi teoreme 1.2.9, cAaZ=p™ *.2+7yc Usia+ 3 =p" Z; din
definitia normei, |a + 3|, = p™F = max{p™™, p~*} = max{|al,, |5],}

2. Daca m < k se procedeaza analog si se obtine |a + |, = p™™ =
max{|alp, | 5]p}-

3. Dacam = k atunci a+f = p™-(+7¥). Din teorema de reprezentare a
intregilor p-adici, 7+7 =p'- 2, unde | € Nsi Z € U. Atunci a + 3 = p"*+ .2
si astfel |+ B, = p~* < p~ = max{al,, |8, } .

a
1.2.16 Observatie. Vr € Q" exista un unic n € Z al. = = p" - 7 unde
a
a,b € Z* sunt doua numere prime cu p. Atunci 7 € Q' C Z,; mai mult cum
a
p /Ja, 7 € U. Atunci |z|, = p™™. Se vede deci ca urma pe Q a normei ne-

arhimediene de corp de pe Q, este chiar norma p-adica definitd in exemplul
1.1.11, (ii). Teorema urmatoare arata ca Q este o submultime densa in Q,.

1.2.17 Teorema.
L. Fie a = [(v,)] € Z, C Q,; atunci (z,)y CZ C Q, si 7y -5 o

Ilp

2. Vo € Q,, I(xp)n € Q asa fel incdt x, — o

Demonstratie. 1. Presupunem ca o = [(z,)] € Z, C Q,; sirul
(75,)n € Z poate fi gandit ca un sir din Q,, prin identificarea fiecarui termen
x, cu clasa de echivalenta generata de sirul constant z,,: x, = i(x,) = [Ty).

Sa observam ca, Vn € N, () ~ (Tpnim)m; intr-adevar, Vm € N, z,, ., =
T, ( mod p™t1). Rezultd atunci cd putem schimba reprezentantul lui o =
[(Zpim)m]; astfel Vn € N,

@ — [Zn] = [(Tntm — Tn)m]-

Dar, Vn € N, 2,1 — T, se divide cu p"*! si astfel

a = [T] =™ (2 — )],



1.2.  CORPUL NUMERELOR p—ADICE 27

Ilp

de unde |a — [z,,]|, < p~"V,¥n € N gi deci z,, = [7,] — .

2. Daca a € Q, atunci, dupa teorema de reprezentare a numerelor p-
adice, a =p™-TcumeZsiz e U CZ,.

Daca m € N atunci a € Z,, si deci, dupa punctul precedent, « este limita
a unui gir de numere intregi.

Daca m € Z\ N si & = [(z,,)] atunci, folosind din nou punctul precedent,

x, — T. Atunci p™-x, —— p"™-T = . Demonstratia se incheie daca mai
n—oo

observam ca (p™ - x,), C Q. .
Rezultatul urmator este de acelasi tip cu lema lui Cesaro din analiza
clasica pe R.

1.2.18 Teorema. Orice sir marginit in norma din (Q,,| - |,) contine un
subsir convergent.

Demonstratie. Daca sirul (a;) € Q, are un subsir constant egal cu
0 atunci acest subsgir converge la 0.

Putem deci presupune ca «, € Q;,‘v’n € N, si atunci, dupa teorema de
structura a numerelor p-adice, exista un sir de intregi (k,), C Z si un sir
(Zn)n CU CZy al.

an =p™ - T,,¥n € N.

1). Presupunem intai ca (o), C Z,; atunci (k,), € N si, deoarece
|an|, = p~* < 1, rezulta ci orice sir din Z, este marginit.

Daca (k,), are un subsgir nemarginit atunci («,,), are un subsir care con-
verge la 0 si demonstratia se incheie.

Presupunem ca sirul (k,,),, este un sir de numere naturale marginit; atunci
acesta are un subsir, notat tot (k,),, constant egal cu un k& € N. Rezulta ca
(an), are un subsir, notat tot cu (v, ),, de forma a,, = p* - 7,,,Vn € N.

Fie, Vn € Nz, = [(2)m], unde (zI),, este reprezentarea canonica a

m
intregului p-adic z,,. Atunci

0<a" <p™t V¥m,neN.

Sirul de numere intregi (2§ ),en ia valori in multimea finita {0,1,--- ,p—1};
rezulta ca exista un element xy € {0,1,--- ,p — 1} si o submultime infinita
Ny € N a.lz{ = zg, Vn € Ny.

Sirul de numere intregi (7),en, ia valori in multimea finita {0,1,--- ,p*—1};

rezulta ci existd un element z; € {0,1,--- ,p* — 1} si o submultime infinita
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N; € Ny al. 2z} = z1,Vn € Ny.

Inductiv, vom gasi la pasul ¢ € N un element x, € {0,1,--- ,p?™ — 1} si o
submultime infinitd N, € N, al. zy = z,,Vn € N,.

Alegem acum ny € Nyg,n; € Ny cung > ng, -+ ,nq € Iqu cu ng > g1, -
Fie sirul (z,), C Z; Vq € Nﬁ ng € 711\1,1 C Nyog i deci 2" = x4 81 v,2) = 241;
rezultd ca vy — ¥4 = x° — 2%y = 0( mod p?). Deci (z,), € Z; fie

T = [(zq)] € Zy.

Sa observam ca Vg € Nyn, e Ny CN,_; C--- C Ny C Np si deci

" =x;,Vi=0,1, -, q. Rezultd ca (znf = )m = (0,- -+ ,0, xZﬂrl—qu, )
si deci 21, — 2445 = 0( mod p?t'),¥s > 1. Atunci 2" — T = p?™! - 7, unde

I'lp,

Uy € Zy si deci [z — 7], < p~@*V) Vg € N de unde 7™ —% 7. Atunci

Ilp ~

o, — DF - T
2). Presupunem acum ca (o), € Q, \ Z,; atunci (k,), € Z \ N. Sirul
(an)n fiind marginit, existd M > 0 al. |a,|, = p~™ < M. Rezultd ca sirul
(kn)n este marginit si deci admite un subsir, notat tot cu (k,),, constant egal
cuun k € Z\ N.
Atunci «,, = p* - Z,,Vn € N. Dar (Z,), C Z, este marginit (orice sir
din Z, este marginit) gi, conform primei parti a demonstratiei, acesta are un

. ~ ~ . || ~
subsir, notat tot cu (Z,,),, convergent la un T € Z,; atunci o, —> p* - 7.

Teorema precedenta ne permite sa demonstram completitudinea corpului
normat (Q,, |- [,).

1.2.19 Teorema. Corpul normat (Q,,|-|,) este complet.

Demonstratie. Demonstratia este similara demonstratiei teoremei de com-
pletitudine a lui R.

Orice gir Cauchy in (Q,, |-|,) este marginit. Conform teoremei precedente
el are un subsir convergent in (Q,,| - |,). Dar, daca un sir Cauchy are un

subsir convergent, el insusi converge. .

1.2.20 Observatie. Deoarece (Q,, |-|,) este corp complet si contine pe Q ca
subcorp normat si dens rezulta ca (Q,, |- |,) este un completat al lui (Q, |- |,).
Deoarece completatul unui corp normat este unic, pana la un izomorfism
izometric de corpuri rezulta ca (Q,, | - |,) este completatul lui (Q, |- |,).

Bibliografie
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Capitolul 2

Recurente liniare si neliniare

In acest capitol se trateazi teoria generala a recurentelor liniare i unele
recurente neliniare.

Recurentele liniare admit o tratare exhaustiva asemanatoare teoriei e-
cuatiilor diferentiale liniare. Astfel este studiat spatiul liniar al solutiilor
recurentelor liniare omogene si forma generala a solutiilor recurentelor liniare
ne-omogene. Pentru gasirea unei solutii particulare a recurentelor ne-omo-
gene se prezinta metoda variatiei constantelor a lui Lagrange.

Recurentele neliniare formeaza o clasa extrem de intinsa. Ne vom limita in
a doua parte a capitolului la o clasa particulara: aceea a mediilor aritmetico-
geometrice. Un motiv pentru aceasta alegere il ofera aplicatiile pe care acest
algoritm le gaseste in calculul aproximativ al lungimii unor curbe clasice:
lemniscatele si elipsele.

Calculul unor marimi cu implicatii astronomie dar si in domenii ca teoria
functiilor a stat in atentia matematicienilor inca din cele mai vechi timpuri.
Viteza de convergenta a algoritmului mediei aritmetico-geometrice a fost pro-
bata pentru a obtine aproximari din ce in ce mai bune pentru lungimea or-
bitelor eliptice sau pentru evaluari ale arcelor de lemniscata. De descoperirea
unor astfel de algoritmi gi-au legat numele matematicieni de prima marime
cum ar fi Arhimede in antichitate dar si matematicieni din epoca moderna
ca Lagrange, Gauss, Legendre, Landen s.a.

2.1 Ecuatii liniare cu diferente

2.1.1 Definitie. Fie f : N — R, f(n) = x,,Vn € N, un gir de numere reale.

29
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Definim diferenta finita de ordin unu a lui f: A(f(n)) = f(n+1) — f(n) =
Tpi1—Tn, Vn € N. Definim acum iterat diferentele finite de ordine superioare
ale lui f prin

((A%(n) = f(n) =,

Alf(n) = A(f(n) = f(n+1) = f(n) = znp1 — 2n,
A?f(n) = A(Alf(n)) = f(n+2) = 2f(n+1)+ f(n) =
(D) = Tny2 — 2xn+1 + T,

APf(n) = AAPHf(n)) = 300 o (=D'Cy - fn+p—k) =
( = i:o(_l)kq{f " Tntp—k-

Invers, putem determina inductiv translatele lui f cu ajutorul diferentelor
finite:

(n+1)=ap1 = Alf(n) +A%(n),
(n+2) =an2 = A%f(n) +2A1f(n) + A%f(n),

=

(T)
fntp) =anp= 35, Cp - Arf(n).

2.1.2 Definitie. O ecuatie cu diferente este o ecuatie de forma:

(1) F(n, A (n), A'f(n),...,APf(n)) = 0,n € N,

unde F: N®@ R 5 R.
Din cele observate mai sus ecuatiei (1) i se poate asocia o relatie de
recurenta:

(2) G, f(n), f(n+1),ecs fn + p)) = 0.

Un sir f : N — R care verifica ecuatia (1) (sau ecuatia asociata (2)) se
numegte solutie a ecuatiei cu diferente (sau respectiv solutie a relatiei de
recurentd). Daca functia F' (sau echivalent G) este liniara in variabilele
Af(n),..., AP f(n) (respectiv f(n),..., f(n + p)) atunci ecuatia cu diferente
se numeste ecuatie liniara (respectiv recurenta liniara).

Forma generala a unei ecuatii cu diferente liniara este:

bo(n) - APf(n) +by(n) - AP f(n) + ...+ by(n) - Af(n) = a(n),n € N,
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unde by, ..., b, si a sunt siruri de numere reale iar recurenta liniara asociata
va fi de forma:

ao(n) - f(n+p)+ar(n)- f(n+p—1)+..+ayn)- f(n) =a(n).

Evident aici ag(n) = by(n),Vn € N.

Vom presupune in cele ce urmeaza ca ag(n) = bo(n) # 0,Vn € N i,
prin impartire cu ag(n) si renotare a coeficientilor a; respectiv b;, vom obtine
forma generala a ecuatiilor cu diferente liniare:

(D) APf(n)+bi(n)- APV f(n) + ... + by(n) - A’f(n) = a(n),¥n € N,

si recurenta asociata:

(R) fn+p)+a(n)-fin+p—1)+..4+ay(n)- f(n)=a(n),vn e N.
Problema pe care vrem sa o rezolvam in acest paragraf este de a gasi

toate girurile f : N — R care verifica ecuatia (D) sau echivalent ecuatia (R).

Ecuatii liniare omogene

In cazul particular in care a(n) = 0,Vn € N, ecuatiile (D) si respectiv (R)
de mai sus se rescriu:

(DO)  APf(n)+bi(n)- AP"1f(n) + ... + by(n) - A’f(n) = 0,Vn € N,

(RO)  f(n+p)+ai(n) - f(n+p—1)+..+ay(n)- f(n)=0,Yn e N.

si se numesc ecuatia liniara omogena cu diferente si respectiv recurenta liniara
omogena asociata; p se va numi ordinul acestor recurente.

2.1.3 Observatie. Daca presupunem ca exista ng € N al a,(ng) = 0
atunci ordinul p al recurentei omogene se poate reduce.

intr—adevér, in acest caz, daca presupunem ca a,—1(n) # 0,Vn € N, atunci
facand n = ny in (RO) obtinem

f(no+1) = Fi(f(no+2),..., f(no +p)),

unde F) este aplicatie liniara de cele p — 1 variabile ale sale.
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In (RO) facem acum n = ng + 1, inlocuim pe f(ng + 1) cu valoarea de
mai sus si obtinem:

f(no+2) = Fy(f(no +3),..., f(no +p+1)),

unde F; este liniara de toate cele p — 1 variabile ale sale, s.a.m.d.
Dupa n pasi obtinem

f(no+n)=F,(f(no+1+n),..,f(no+p—1+n)).

Daca in ultima relatie facem translatia f(no +n) = g(n) obtinem

gn) = F.(g(n+1),...,9(n+p—1))

care este o recurenta liniara omogena de ordin p — 1.
In cele ce urmeaza vom considera numai recurente liniare omogene de
ordin p cu ay(n) # 0,Vn € N.

2.1.4 Teorema. Fie p € N ay,...,a, siruri de numere reale date a.i.
a,(n) #0,Yn € N gi

(RO)  f(n+p)+ai(n)-fln+p—1)+..+ay(n)- f(n)=0,Yn € N.
recurenta lintara omogena de ordin p; atunci mulfimea

V ={f:N—= R|f verifica (RO)}
este un spatiu liniar real de dimensiune p.

Demonstratie. Este evident ca V este spatiu liniar real fata de operatiile
uzuale de adunare i inmultire cu scalari intre giruri; fie dim V' dimensiunea
sa.

Remarcam ca un gir f € V este perfect determinat daca cunoastem
primele sale p valori. Intr-adevir, cunoscand f(0), f(1), ..., f(p — 1), deter-
minam f(p) dand lui n valoarea 0 in (RO); apoi facand n = 1, determinam
f(p+1), sam.d.

Fie atunci f°, f', ..., f""' € V ali.

fPk)=1si f*(i) =0,¥i € {0,...,p — 1} \ {k}.
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Fie Ao~ [+ ...+ X1 /77! = 0 0 combinatie liniard nuld a acestor siruri;
rezulta in particular ca

(1) M fP(n)+ o+ X P N) =0,V =0,....p— 1.

Dar, Vn € {0,....,p — 1}, f¥(n) = 0,Vk # n si f*(n) = 1, de unde A, =
0,Vn=0,...,p— 1sideci f° ..., f~! sunt liniar independente.
Rezulta din cele de mai sus ca:

(2) dimV > p.

~

Fie acum ¢°,...,¢g?"', g? € V, (p+ 1) solutii si Ao, ..., A, a.l.

p .
(3) Xi-g' =0
i=0
Atunci
p .
(4) Z)\i-g’(n):0,‘v’n:0,...,p—1.
i=0

(4) este un sistem liniar omogen de p ecuatii cu p+ 1 necunoscute: A, ..., Ap.
Acest sistem admite deci si solutii nebanale; deci exista Ao, ..., Ay, nu toate
nule, a.i.

() Z i g'(n) =0,

Vn =0,...,p — 1. Vom demonstra prin inductie ca (5) este adevarata pentru
orice n € N. (5) este verificata pentrun =0,...,p — 1.

Presupunem ca m > p—114i ca (5) are loc pentru n = 0, 1, ..., m; folosind
cag'i=0,..,p— 1, verificd (RO), deci c&, Vi =0,...,p— 1,Vn € N,

obtinem:
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==Y A aylm ot 1—p) gl (m 1) =

i=0 j=1
p p 3 A
== ajm+1-p)- Y Ai-g'(m+1-j).
j=1 i=0

Dar, Vj =1,...,p, m+1—j < m si deci, din ipoteza inductiva,
P oXi-g'(m+1—7)=0. Rezulta ca (5) este verificatd pentru m + 1.
Deoarece (5) este adevarata pentru orice n € N rezulta ca

i)\i’gi_g
i=0

ceea ce spune ci orice p + 1 vectori, ¢°, ..., g?, sunt liniar dependenti.
Rezulta ca

(6) dimV < p+ 1.
Din (2) si (6) dimV = p. .

2.1.5 Definitie. Fie f° f!, ..., f~! € V; determinantul

£o(m) £i(m) )
DI, iy = | 0D Sl )
fn+p-1) flln+p—1) -+ frliln+p—1)

n € N, se numeste determinant Casorati asociat functiilor f°,..., fP71.

2.1.6 Lema. Vf°, ..., fP~1 € V,Vn € N,
D[f% .., f7H(n) = (=1)" a,(0)ap(1) - - ap(n — 1) - D[f°, ..., f*~1](0).

Demonstratie. Deoarece f°, ..., fP~! verifica relatia (RO), Vn > 1,
Vk=0,...,p—1,

ffintp=1)=-ai(n=1)- ffn+p=2) = —ayn—1)- f(n-1).
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Inlocuind ultima linie a determinantului Casorati si tinand cont de pro-
prietatile determinantilor obtinem, Vn > 1:

fo(n) PN (n)
fon+1) Do+ 1)
DI, ..., frY(n) = :
fln+tp-2) PP nt+p—2)
—ap(n—1)- foln—1) & —ay(n—1)- fFH(n—1)

— —ap(n— 1) (=1 D[S, e (- 1),
De aici, aplicand inductiv egalitatea de mai sus:
DIf, oy f711(0) = (—1)%ap(n — 1)+ ap(n — k) - DI, oy 710 — ) =

= (=1)™ay(n — 1)+ a,(0) - DIf", .., f771](0).

]

2.1.7 Corolar. D[f°, ..., f77'](0) = 0 < In € N, D[, ..., f77](n) = 0.
2.1.8 Propozitie. Vectorii f°, ..., fP~1 € V sunt liniar independenti dacd
si numai daca D[f°, ..., fP71](0) # 0 si deci, echivalent, D[f°, ..., fF~!(n) #
0,Vn € N.

Demonstratie. Presupunem ca f,..., f7~! nu sunt liniar independent;;
deci exista Ag,...\,—1 € R, nu toate nule, aga fel incat ZZ;% M- fF = 0.
Putem sa presupunem, fara a restrange generalitatea ca Ay # 0; atunci
Ao+ £2(0) £1(0) e fP7H0)

Ao+ fO(1) fH (1) e PN

Moo fflo=1) fllp=1) - -1
Daca inmultim coloana a doua a determinantului de mai sus cu Ay, ... ,
coloana p cu \,_; si adunam totul la coloana intai obtinem pe prima coloana

numai zero de unde: Ao - D[f, ..., fP71](0) = 0 si deci D[f°, ..., fP~1](0) = 0.
Reciproc, daca f, ..., fP~! sunt liniar independenti, sistemul:

Mo SO 44+ Aoy - [P (R) =0,k =0,...,p—1

>\0 : D[foa ) fp—l](o) =

are numai solutia banala, de unde rezulta ca determinantul sau este nenul.

Dar determinantul sistemului de mai sus este D[fY, ..., f£71](0). i
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2.1.9 Observatie. Daca putem determina p vectori liniar independenti
f1, ..., f? € V atunci solutia generald a recurentei omogene (RO) este:

f:cl-fl—i-cQ-fQ—i----—i-cp-fp,cl-ER,Vizl,...,p.

Intr-un caz particular, acela al ecuatiilor omogene cu coeficienti constanti,
putem determina p vectori liniar independenti in V.

Ecuatii omogene cu coeficienti constanti
Fie p € N*,a4,...,a, € R cu a, # 0; ecuatia
(RO") fin+p)+ar-f(n+p—1)+..+a, f(n)=0,YneN.

se numegte recurenta liniara omogena cu coeficienti constanti; ea este aso-
ciata unei ecuatii cu diferente omogene cu coeficienti constanti de tipul:

(DO AP f(n) +by - AP LF(n) + ...+ b, - Af(n) = 0,¥n € N,

unde by, ...,0, € R.
Cautam pentru ecuatia (RO’) solutii de forma f(n) = A\",n € N; im-
punand ca f sa verifice (RO’) obtinem:

(EC) Notap - N4 a, =0,

Ecuatia (EC) se numesgte ecuatia caracteristica atasata ecuatiei liniare
omogene cu coeficienti constanti (RO’). Aceasta ecuatie admite p solutii
reale sau complexe.

Vom studia pe rand cazurile ce pot apare.

I. Presupunem ca ecuatia (E'C') admite radacini reale distincte A, - -+, Ap.

In acest caz, Vk = 1, .0, fE(n) = \,n € N, definesc p vectori liniar
independenti in V. intr—adevér, determinantul lui Casorati pentru aceasta
multime de vectori este

1 1 —
Ao A e A
DIff - o)== ] e £
)\}1771 )\]2)71 . )\p—l 1<k<i<p
p
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Conform propozitiei 2.1.8 f1, .-, fP formeaza o multime de vectori liniar
independenti si deci solutia generala a recurentei omogene este:

p
f(n) = ch - Ap,n e N.
k=1

IT. 5S4 presupunem ca radacinile Ay, --- , A, sunt distincte dar ca printre
ele apare si o pereche complex conjugatd: Ao = R -e*® = R(cosa +
isina), unde i = v/—1. In acest caz multimea f!(n) = R"cosna, f2(n) =
R"sinna, f3(n) = N, -+, fP(n) = A este liniar independenta. Intr-adevir
determinantul Casorati asociat acestei multimi este:

1 0 1

Rcosa Rsina Az N

D[flv"' ’fp](o):

Rrleos(p—1)a RFlsin(p—1)a M1 1 a7l

In determinantul de mai sus inmultim coloana a doua cu 7 = v/—1 gi adunam
la coloana intai:

1 0 1 e 1
Dift ) =| e S
ML Rrlsin (p— Do AETH - Ap—1

Inmultim acum coloana a doua cu —2¢ si adunam la aceasta coloana intai:

1 1 |
. A A o
(=20)- DIt 7o) = 7 = T v £
_ _ _ 1<k<iI<
)\11)1 )\gl )\51 p

Propozitia 2.1.8 ne asigura astfel independenta vectorilor; solutia generala
va fi in acest caz:

p
f(n) :Cl'RnCOSVlOé-FCQ-R”sinna+20k~AZ,neN.
k=3
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Daca ecuatia (EC) are mai multe perechi de radacini complex conjugate
pentru fiecare pereche se procedeaza la fel.

III. Sa consideram acum cazul radacinilor multiple.

Daca \; este radacina multipla de ordin s pentru ecuatia caracteristica,
trebuie sa inlocuim in sistemul A} = A} = = A, Agy1r o Ay primii
s vectori (egali intre ei) cu altii; sa cautam solu‘gu noi de forma f(n) =
g(n) - At,n € N. Inlocuind in ecuatia caracteristic si simplificand prin A}
obtinem:

(1) gn+p) - N4a -gn+p—1)- X"+ 4a,-gn)=0neN,

Aplicam acum sirului g relatiile (7") date in cadrul definitiei 2.1.1 i obtinem,
Vne N,VE=0,---,p,

g(n+k) Z CIA g(
Revenim cu aceste valori in relatiile (1)

0
ch /\p+a120 (ANgn) - N+t a, > CINg(n) =0,

§=0
sau, dupa ce grupam termenii:
(2) (Cg)\’f + alq?_l)\’f_l + - 4a,) - A(n)+
+(C;)\]1) + (110;_1)\1;_1 + o4 ap—l>\1) . Alg(n) NI
—|—(C£_l)\]10 + alcg:%)\flu—l) AP Vg(n) + C«ZI;)\If - APg(n) = 0.

Fie acum P(\) = AP +a X~ +- - - +q, polinomul caracteristic; atunci relatia
(2) se rescrie:

(3) P(A) - A% (n) + M P (M) - Alg(n) + -+
AP1
(p—1)!

Deoarece \; este radacina multipla de ordin s, P(A\) = P'(\) = -+ =
PE=D()\) = 0 si atunci relatia (3) devine:
s+1

] A
@ P00 M)+ Zmy P - Al

+

p
P(pfl)()\1> . Apflg(n) + %p(p)()\l) -APg(n) = 0.
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)\P
+—}P(p)(/\1) -APg(n) = 0.
p!
Relatia (4) poate fi verificata identic daca g este un polinom de grad mai mic
decat s deoarece, in acest caz, diferentele finite ale lui ¢ de ordin mai mare

sau egal cu s sunt identic nule. In particular putem alege:

gl(”) = 1792<n) =M, 7gS<n) =n""t

In acest fel vom inlocui termenii egali AT, - AT cu sirurile:
PYIND VIR T LN

Ramane sa demonstram liniara independenta. Vom face acest lucru in
cazul general al mai multor radacini multiple pentru ecuatia caracteristica.
Sa presupunem ca ecuatia caracteristica (FC') admite radacinile multiple:
A1 cu ordinul de multiplicitate sy,
Ao cu ordinul de multiplicitate so,

Aq cu ordinul de multiplicitate s,.

Evident ca s; + -5, = p.

In locul fiecdrei radacini multiple vom pune giruri de tipul celor de mai
sus si astfel obtinem sistemul de solutii ale ecuatiei caracteristice:

?,TL)\?," ’ 7n51_1)\?7
n no .. so—1yn
(S) Ay, Ay, - NG,
n n sq—1y\n
Ay MGy -+ T AL

2.1.10 Teorema. Cele p solutii ale sistemului (S) de mai sus formeaza un
sistem de vectori liniar independent in V.

Demonstratie. Sa consideram o combinatie liniara nula a acestor p
vectori:

(1) (Ci A + con AT + -+ g 1" TN 4 -+

+(ClqAZ + CQanZ —|— . + quanq—lA'g) _ 0

Vom ordona termenii ce apar in relatia (1) dupa urmatoarele criterii:
Presupunem intai ca radacinile ecuatiei caracteristice sunt ordonate dupa
marimea modulului aga fel incat:

A = [Aaf =0 = Ay
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Daca avem radacini de modul maxim egal, sa zicem
Ml = =M =R> A 2 = A

atunci primele le ordonam dupa ordinul lor de multiplicitate, adica pre-
supunem ca:
S§1 28228

- T

Sa presupunem si in acest caz ca am putea avea ordine de multiplicitate
maxime egale si sa notam:

S| =S8y =" =58 =58> 541> "> 5.

Vom spune cd termenii n* A7, ns~ A2 ... n*7IA" sunt dominanti in
relatia (1).

Ideea de demonstratie este urmatoarea: vom arata intai ca toti termenii
dominanti din relatia (1) au coeficientii nuli; apoi vom re-ordona relatia (1),
punand in evidenta urmatorii termeni dominanti si vom repeta rationamentul
pana ce vom obtine ca toti coeficientii din relatia (1) sunt nuli. De aici va
rezulta ca sistemul de vectori () este liniar independent.

Sa observam ca un termen nk/\}l nu este dominant daca: 7 > r sau daca
j <rsik<s—1. Sa observam de asemenea ca exista un ng € N aga fel
incat pentru orice termen nk)\? care nu este dominant:

(%)

Intr-adevir, daci j > 7 |\;| < R si deci

|nk/\?| k—s+2 ’)‘j‘ "
nemige R ) Y

si deci putem gasi ng € N asa fel incat

‘nk)‘?l k—s+42 |)‘j| !
A -1y
Mg T R

ceea ce conduce imediat la relatia (x); deoarece k si j parcurg multimi finite
de valori ngy se poate alege independent.
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Daca j <rsik <s—1atunci |A\;| = R si deci

|nk)\§z| B nk ns—2

nsfan - nsfl — nsfl

1
-

Astfel, (%) este demonstrata in toate cazurile posibile.
Sa mai remarcam ca in relatia (1) avem un numar finit de termeni si deci
exista un numar M > 0 asa fel incat:

(**) |ij|§M7vj:17"'7Q7Vk:17"'75j'

Revenim la relatia (1) unde pastram in primul membru doar termenii
dominant;i:

(2) Can™ A e TN = - (Z ,Ck’j”kv> ’

unde Z' indica suma tuturor termenilor din membrul intai al relatiei (1)

cu exceptia celor dominanti.
Deoarece |A1]| = |A2] = -+ = |\¢| = R, rezulta ca

A = Re"™ Ay = Re*™? .-+ |\ = Re'™,

unde i = /—1 iar aj,ag, -+ ,a; € [0,27) sunt distincte doua céate doua
deoarece A, Ao, - -+, \; sunt distincte doua cate doua.
Impértim relatia (2) cu n* 'R

. . nk\?
Q1N 04m / J
3) Ca ™ oo ey ——(Z T | -

In relatia (3) ludm In modul ambii termeni, majoram modulul membrului
doi cu suma modulelor i utilizand conditiile (%) si (**) obtinem:

. , M
(4) lcs1€" 1 4 - - 4 e’ < p - —,Vn > ny.
n
Fie
eialn eiagn . eiatn
eial(nJrl) et (n+1) ce. elo (n+1)
eial(nthfl) el (n+t—1) et (n+t—1)
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1 1 1
) ) ) eial eiaz eiat
— plaingiaan ioun
eial(tfl) e’iaz(tfl) . 6i01t(t71)
Atunci
(5) D) =[] e —e].
1<j<k<t
Cum aq, as, - - -, ay sunt distincte doua cate doud, se observa din (5) ca |D(n
9 3 y Xt )

este un numar strict pozitiv independent de n.
Pe de alta parte daca inmultim prima coloana a determinantului D(n) cu
Cs1 §1 apoi inmultim coloana a doua a determinantului cu ¢4 si 0 adunam la

prima, ... , coloana t cu cg si 0 adunam la coloana intai obtinem:
Al eiagn - eiatn
A2 eiag(nJrl) ce. o elou (n+1)
i D(n)=1| 7 :
At eiag(nthfl) ce. el (n+t—1)

unde, Vk = 1,- -+ ,t, A, = cqp - (=D et HR=1)  Din relatia (4)
|Ag| < ’%,Vn > ng si, cum toate celelalte elemente ale determinantului de
mai sus sunt in modul egale cu 1, obtinem aplicand definitia determinantului:

M
les1| - | D(n)| < - %,vn > no.

Tinand cont de (5), D(n) este constant si strict pozitiv si deci relatia de mai
sus poate avea loc doar daca cg; = 0.

Cu un rationament asemanator se demonstreaza ca si ceilalti coeficienti
ai termenilor dominanti din (1) sunt nuli.

Asga cum am anuntat deja, termenii dominanti din (1) dispar si, printr-un
proces de re-ordonare, gasim termenii dominanti dintre cei ramasi; continuam
rationamentul pana ce obtinem toti coeficientii din relatia (1) egali cu zero.,

2.1.11 Observatie. Daca una dintre radacinile multiple este complexa
atunci vom proceda ca in cazul II.
Sa presupunem de exemplu c¢d Ay = R - ¢ = R(cosa + isina), unde

i = v/—1 este multipla de ordin s;; atunci este evident ca \y = R - e @ =
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R(cosa — isina) va avea ordinul de multiplicitate sy = s;. In acest caz
primele doua linii din sistemul de solutii (S) se vor inlocui cu

R™cos no, nR" cosnay, - - - ,n*1 "L R™ cos na,
R"sinna, nR"sinna, - - - ,n*2~ 1 R" sin na.

Ecuatii liniare neomogene

2.1.12 Propozitie. Fie recurenta liniara neomogend:

(R) fn+p)+ai(n)-f(n+p—1)+..+a,(n)- f(n)=a(n),Vn e N
st recurenta liniara omogenda asociata ei:

(RO)  f(n+p)+ai(n)-fln+p—1)+..+ay(n)- f(n)=0,YneN;

dacd f1,--- fP sunt p solutii liniar independente ale ecutiei omogene (RO) si
daca f* este o solutie particulard a ecuatiei neomogene (R), atunci solutia
generala a ecuatiei (R) este

fzcl'f1+"'+cp'fp+f*7ck€R7Vk:1a”'7p'

Demonstratie.

Este evident c&, Vey, - -+, ¢, € R, S 0_ ¢ - f¥ + f* verificd ecuatia (R).

Fie acum f o solutie arbitrara a ecuatiei (R); atunci, deoarece f* este si
ea solutie pentru (R),

(1) fn+p)+a(n)-fln+p—1)+..+ay(n)- f(n)=a(n),¥n € N,

2) ffnt+p)+a(n) ffn+p—1)+..+a(n)- f"(n) =a(n),vn eN.
Scadem (2) din (1) si obtinem:

(f =/ n+p)+ar(n)-(f = f*)(n+p—1)+...+ap(n)-(f = f*)(n) = 0,Vn € N.

Deci f — f* este solutie pentru ecuatia (RO) si astfel exista ¢y,---,¢, € R
al (f—f)=>0_ck-fFdeunde f=>"F_cp- f*+ f .

Rezulta din propozitia precedenta ca pentru a rezolva o recurenta liniara
neomogena este suficient sa gasim o solutie particulara a ei (bineinteles in
ipoteza ca putem rezolva ecuatia omogena asociata).
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Metoda de a gasi o astfel de solutie particulara este metoda variatiei
constantelor sau metoda lui Lagrange.

S# presupunem ca f!, , fP sunt p solutii liniar independente ale ecuatiei
omogene (RO); stim ca solutla generald a ecuatiei omogene este Y p_, ¢« f*.

Vom cauta o solutie particulara a ecuatiei neomogene (R) considerand
ca ¢y, -+ ,c, de mai sus nu sunt constante ci siruri pe care urmeaza sa le
determinam.

Deci incercam sa determinam o solutie particulara a ecuatiei omogene de
forma

Fn)=>"cu(n) - f¥(n),n € N,

Pentru a determina cele p siruri necunoscute ¢;(n),--- , cy,(n) vom impune
lui f* sa verifice ecutia (R) gi vom adauga p — 1 conditii suplimentare care
vor conduce la urmatorul sistem compatibil:

()Xo cx(n+p)ff(n+p) +ai(n) 30 ce(n+p— 1) fF(n+p—1)+
+ At ap(n) 20, ar(n) fH(n) = a(n)
(2) 22:1 cx(n + 1)fk n+1)= Zk:l Ck(”)fk(n"' 1)
(3) >k crln + 2)f*(n+2) = > he ce(n) fF(n+2)

L 0) Xk +p =1 fFn+p—1)=37_ c(n)ff(n+p—1).

Vom rezolva acest sistem transforméandu-l intr-unul de ecuatii cu diferente.
Intai in ecuatia (p) trecem n +— n + 1 si vom obtine primul termen din
ecuatia (1):

p p

ch(n+p)fk(n+p) = ch(n+ Dff(n+p) =

k=1 k=1

p
:ZAck(n (n+p) +ch fF(n+p).
k=1

Termenii urmatori ai ecuatiei (1) se modifica corespunzator cu ajutorul
ecuatiilor (p), (p — 1),---,(2) in aceasta ordine gi obtinem:

ZACk ) f¥(n + p) +ch ) ¥ (n+p) + ai(n ch ffn+p—1)+
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P

4+ 4+ ap(n) Z Ck(n)fk(n) = a(n),

k=1
sau

ZACk fk n—l—p)—i—

+Yc(n) [fF(n+p)+ai(n) ff(n+p—=1) + -+ ap(n) f*(n)] = a(n).

Deoarece f1, .- fP sunt solutii ale ecuatiei omogene (RO), parantezele pi-
trate din relatia de mai sus se anuleaza si astfel ecuatia (1) devine:

(1) }:A% f¥n+p) = a(n).

Ecuatia (2) se rescrie:

(2/) Z Ack n + ) 0.

Daca in ecuatia (2) trecem n +— n + 1 si inlocuim in ecuatia (3) obtinem:

(3) E:A% ffn+2)=0.

Apoi vom trece in ecuatia (3) pe n in n + 1 si vom inlocui in ecuatia (4)
pentru a obtine:

(4) Z Acy(n)f¥(n+3) =0,

() ZAck ffn+p—-1)=0.
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In sfarsit rescriem sistemul de mai sus plasand ecuatia (1') pe ultimul loc:

(> Ack(n)f¥(n+1) =0
S Ack(n)ffF(n+2)=0
(5) > o1 Acy(n) fF(n+3) =0

>ori Acy(n)ff(n+p—1) =0
\ 22:1 Ack(n)fk(n +p) = a(n).

Sistemul (S) are p ecuatii cu p necunoscute: Acy(n),---,Acy(n). Determi-
nantul sistemului este determinantul lui Casorati D[f!,--- | fP](n+1) asociat
sistemului de p vectori liniar independenti in spatiul vectorial al solutiilor
ecuatiei omogene (RO); dupa propozitia 2.1.8 acesta este nenul si astfel sis-
temul () admite solutie unica: Acy(n),---,Acy(n), unde, Yk =1,--- ,p,

flin+1) ¢ f~'n+1) 0 ffrln+1) @ fP(n+1)

flfin+p) = fFrn+p) aln) fn+p) : fF(n+p)
D[fY, ..., fPl(n+1)

(n)
unde am notat cu D(n) = D[f!,---, fPl(n + 1) si cu Dy(n) =

Ack(n) =

Acg(n) = (=1)"**a(n)

-

fiin+1) S L (/N §) A n+1) C o fP(n+1)

ffln+p—=1) ¢ fFYn+p—-1) ffFln+p-1) ¢ fPln+p—1)

Putem atunci determina, pana la o constanta aditiva, sirurile necunoscute
ci(n), -+, cp(n); astfel, Vk = 1,--- | p,¥n € N¥,

ex(n) = 0) + Y Aeall) = u(0) + (1P S alt) i

O solutie particulara pentru ecuatia neomogena (R) va fi deci:

S el () = 3 0 () + 3 (-1 ( ] a<z>%’“((j>>> 4(n)
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dar, deoarece > _, cx(0) f*(n) este solutie a ecuatiei omogene, putem si ludim
ca solutie particulara:

=3 (£ )

k=1 =0

Atunci, dupa propozitia 2.1.12, solutia generala a ecuatiei neomogene este:

f) = S et )+ Y01 (Z )fk”
k=1 k=1 =0

2.1.13 Observatii. (i) Metoda variatiei constantelor se poate aplica cu
succes n cazul ecuatiilor liniare neomogene ale caror ecuatii omogene aso-
ciate au coeficienti constanti. Intr-adevir, in acest caz, ecuatia caracteris-
tica asociata ecuatiei omogene permite gasirea unui sitem liniar independent
de solutii pentru ecuatia omogena si deci gasirea unei solutii particulare a
ecuatiei neomogene.

(ii) Din punct de vedere practic, metoda variatiei constantelor este destul
de dificil de aplicat. In anumite cazuri particulare vom putea gasi mai ugor
solutii particulare.

2.1.14 Teorema. Fie recurenta liniara neomogena cu coeficienti constanti:
fn+p)+a-fln+p—1)+..4a,  f(n)=Q(n)e",vn € N,
unde Q) este un polinom de grad q iar o € R; fie
CA) =N+ a W+ +a,
polinomul caracteristic asociat ecuatier omogene
fntp)+ar-fln+p—1)+..+a f(n)=0.
Atunci o solutie particulara a ecuatiei neomogene este de forma
f(n) = R(n)e™,

unde R este un polinom de grad r = q+ s, s fiind ordinul de multiplicitate al
radacinii e pentru polinomul C' (dacd e* nu este radacindg pentru C, s = 0).
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Demonstratie. incercém, pentru ecuatia neomogena, o solutie
particulara de forma f*(n) = R(n)e®”", unde R este un polinom de grad r
ce urmeaza a fi determinat. Punand conditia ca ecuatia neomogena sa fie
verificata de f* obtinem:

(1) R(n+p)e™P Lo R(n+p—1)e™?=D ... 4 g R(n)e™ = Q(n)e™.
Simplificam relatia (1) cu e*” si obtinem:
(2) R(n+p)e®” + aR(n +p—1)e*P™D ... 4+ a,R(n) = Q(n).

In relatia (2) inlocuim, Yk =0, .-, p,

k
R(n+k) = Z C? A R(n)(vezi relatiile (T) de la definitia 2.1.1),

=0

p
(3) > CINR(n) ap+alz AT R(n)ee

j=0

0

+oota, Y CIAR(n) = Q(n).

J=0

Daca in (3) re-ordonam termenii obtinem:
(4) (COe + a1 C9_1e*P™ V) - 4+ a,C0) A"R(n)+

+ (Cleap + alc’l, ea(pfl) 4+ ..o+ apilc’llea) AlR(n)—I—
o (CRe 4 a OF_e®@ ) 4 a,  CFe™™) ARR(n)+
oo (O 4 CPZ1e D) APTIR(n) + CePAPR(n) = Q(n).

Daca tinem cont de forma polinomului caracteristic C'(A) si a derivatelor sale
putem re-scrie relatia (4)
1

(5)  C(e")AR(n) + C'(e)e*A'R(n) + --- + HC’(’“)(ea)eakAkR(n)—I—
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1
ot ac@(ea)eamp}z(n) = Q(n).
Deoarece e* este radacina multipla de ordin s pentru polinomul C, C(e®) =
C'(e*) = -+ = CEV(e*) = 0 i deci din (5) ramane
1 (8) (), s A S 1 (p) ()
(6) ;C’ (eM)e™ A R(n)+---+ﬁC’p(e JePAPR(n) = Q(n).

In relatia (6) A*R(n),---,APR(n) sunt polinoame de grad respectiv r —

s,-++,7 — p si deci pentru a putea identifica coeficientii lui R trebuie ca

r—s=gqgsaur=q+s. Samairemarcam ca, daca inlocuim in (6) R(n) =
p—s

o AnP~I atunci A°R(n) = A (Z Ajnpj> si deci in membrul stang
=0

al relatiei (6) raman ¢ + 1 necunoscute care urmeaza a fi determinate prin

identificarea coeficientilor cu acei ai polinomului Q. .

2.1.15 Observatii. (i) Rezulta din demonstratia de mai sus ca polinomul
necunoscut R trebuie cautat de forma R(n) = Agni™*+And™s~14+.. .+ A n’.
In cazul in care e® nu este radicind a polinomului C, s = 0 gi deci R va
fi un polinom de acelasi grad cu Q.
(il) Daca cautam o solutie particulara pentru ecuatia neomogena

fin+p)+ar-f(n+p—1)+..+a,  f(n)=Q(n),¥n € N,

unde @ este un polinom de grad ¢, atunci putem aplica rezultatul din teo-
rema precedenta cu o = 0. Concluzia este ca solutia particulara trebuie
cautata sub forma unui polinom de grad g daca 1 nu este solutie a ecuatiei
caracteristice.

Daca 1 este radacina multipla de ordin S a ecuatiei caracteristice atunci
solutia particulara @) trebuie cautata de forma:

R(n) = Agn®** + An®™571 4.+ An®.

2.2 Media aritmetico-geometrica

Algoritmul dublu format din media aritmetica gi media geometrica (algorit-
mul (A,G)) este unul dintre cei mai importanti algoritmi neliniari; legaturile
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sale cu una dintre cele mai profunde teorii, aceea a functiilor si integralelor
eliptice, ne-au determinat sa-i dedicam aceasta sectiune.

Media aritmetico — geometrica a aparut intr-un memoriu al lui Lagrange
publicat in 1784 — 1785. Adolescent fiind, Gauss redescopera algoritmul.
Contributia sa majora, care include o reprezentare integrala eleganta a limi-
tei, a fost facuta, insa, cu 7-9 ani mai tarziu. In 1816, Gauss arata, intr-o
scrisoare adresata lui H.C. Schumacher, ca a descoperit independent media
aritmetico — geometrica in 1791, la varsta de 14 ani. La varsta de 22-23
de ani, Gauss a scris o lucrare in care descrie descoperirile sale cu privire
la media aritmetica geometrica. Aceasta lucrare nu a fost publicata decat
dupa moartea sa, ca de altfel multe alte lucrari ale lui. In mod evident
Gauss a acordat o importanta deosebita algoritmului (A, G) marturie stand
numeroasele referiri facute in jurnalul sau in perioada 1799 — 1800. Unele
referiri sunt destul de vagi si este foarte posibil sa nu fi aflat inca totul despre
descoperirile lui Gauss in aceasta privinta.

Prezentam teorema lui Gauss cu doua demonstratii; una apartine lui
Gauss iar cealalta este demonstratia lui Legendre care utilizeaza transfor-
marea Landen.

Presupunem ca a > b > 0; algoritmul mediilor aritmetico-geometrice este:

(A-G) =" > 1 ag=a,by =

Folosind inegalitatea cunoscuta dintre media geometrica si cea aritmetica
se poate usor arata ca, Vn € N,

O<b=by<hO1 <..<bh,<a,<..<a <aqy=a.

Rezulta de aici ca sirurile (ay,), si (by), sunt convergente si, trecand la limita
in una dintre relatiile de recurenta de mai sus, obtinem ca lim, .. a, =
lim,, o b,. Valoarea comuna a celor doua limite se noteaza cu M (a,b),
marcand faptul ca ea depinde de valorile initiale a si b; M(a,b) se va numi
media aritmetico-geometrica a numerelor a si 0.

Gauss da patru exemple numerice prin care probeaza viteza mare de
convergenta a algoritmului mediilor aritmetico-geometrice; prezentam doar
unul dintre acestea:

Fie a =1 i b =0, 8; atunci:
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ay = O, 9

az = 0,897213595499957939282...
as = 0,897211432116346...

as = 0,897211432115042...

by = 0,8944271909999158785654...
by = 0,897209268732734...
bs = 0,897211432113738...
by = 0,897211432115042...
Propozitia de mai jos pune in evidenta o formula de calcul a erorii care
ilustreaza viteza mare de convergenta a acestui algoritm.

2.2.1 Propozitie. Fie a > b > 0; sirurile (a,) si (b,) generate de algorit-
mul (A — Q) wverifica relatia:

a—0b\*
—b, < 8b- Vn € N.
(%) a, — b, <8b ( 7 ) ,Vn €

Demonstratie. Fie n € N*; atunci
an— bn— a’?’L \/ TL
an_bn:%_\/anl'bnl_ - 1
(an—l - bn—l)Q (an—l - bn—l)2

= 2( T+ bn71)2 - 2.92.p )

de unde

(a'n—l - bn—1)2

—b, <
) by <

In relatia (1) trecem n +— n — 1 gi obtinem:

(an—2 - bn—2)2

(2) Up—1—bp1 < 7 ,n > 2.
Din relatiile (1) si (2) obtinem prin iteratii repetate:
_ 22 _ 23 AV
PP G Bl Vi G Tk VS Gl
(80) - (80)* (8b) - (8D)? - (8b)? (8)1+2+2%+..+2

a—0b\*
—Sb-( Sb>
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2.2.2 Observatii. (i) Este evident ca media aritmetico-geometrica este o
functie simetrica:

M(a,b) = M(b,a),Va,b > 0.

(ii) Daca presupunem ca pornim algoritmul cu (a,b;) in loc de (a,b),
cum toti termenii (a,,b,),n > 1, raman neschimbati, rezulta ca M (a,b) =
M(al,bl). Deci

b
M(a,b):M(a; ,\/%),va,z»o.

(iii) S& presupunem ca plecam cu valorile initiale «’ = c-a i b’ = ¢- b,
unde ¢ este un numar strict pozitiv fixat; atunci
ay=c-ay, by=c-by,....a, =c-a,, U, =c- by, ...

n

Rezulta ca
M (c-a,c-b)=c-M a,b),¥ec> 0.

Pentru a putea obtine o reprezentare integrala a mediei aritmetico-geo-
metrice vom defini integralele eliptice complete de prima specie.

2.2.3 Definitie. Integrala

lz] <1

B dt
K(z) = / ——
0 1—a2sin®t
se numeste integrala eliptica completa de prima specie.

In teorema urmétoare dim reprezentarea integrala a lui Gauss pentru
M(1+2z,1—ux).

2.2.4 Teorema (Gauss — 1799, publicata in 1818).

™ ™

-K<x>:2/s‘ it
0 v/ 1—a2sin?t

In cele ce urmeaza vom prezenta doua demonstratii diferite ale teoremei
2.2.4.

M(1+z1—x)= Ve (—1,1).

2
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Demonstratia lui Gauss

Functia M fiind simetrica (vezi punctul (i) din 2.2.2),
M+ (—2),1—-(—x)=M(Q—-z,1+2)=M(1+2z,1—2x)
deci M este o functie para de z. Putem atunci presupune ca

1 A
(1) M(+z,1—2) Z ™
o 2t . . y
Facem substitutia + = ——. Din 2.2.2 obtinem ca:
142

M(1+x,1—:p):M(1+ 2t 2 ):M<(1+t)2 (1—25)2)

1+ t2’ 1+¢2 14127 14¢2

1 2 2
= M(((1+1¢)",(1—-1)7) =
_ 1! (1+8)°+ 01—t T )
_m-M< : Aarra-0?)) =
:L-M(Ht2 1—1%)
1+1¢2 ’
Inlocuind in (1), obtinem:
1+ ¢2 - ot \* . :
M 2L B = ;Ak (m) , de unde, utilizand din nou (1),

obtinem relatia

(1 + t2) Z Akt4k Z A (1+t2) Sall

k=0

(2) S A =3 Ak (14 2) T
k=0

k=0

Reamintim formula seriei binomiale:

1)@ —n+1
(1+ ) —1+Z (a l@=ntl) nvoeR va e (-1,1).
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(2k+1)(2k+2)...(2k +n)
n!

Deci: (1 + t2)_2k_1 =1+ Z

n=1

=1+ Cpp, (1)

n=1
Revenind in relatia (2) obtinem:

(1) =

D At =" A2 (1 +) (=" C;?Hnt%)] =
k=0 k=0 n=1

=3 A2 (1= Cl B+ Cop ot + o+ (—1)"Cl ™" + )] =
k=0

= (A2 — O A2 4 4 (—1)" Cy A2 ] =
k=0

= (A — Agt? + Agt* — Apt® + ..+ (=1)" Apt™ + )+
+ (A12°% = C3 A 2% + CTA 2% + L+ (1) A O L, 2%+ L) +
+ (A2%! — C3A2M0 + CEARME + .+ (—1)" O A2 T+ ) + .
Deci

(3) D At = Ag+ (—Ag+ 22A)) 2+ (Ag — C42°A + 2 Ay) 1
k=0

+ (A + C7A12° — C 42" + A32°) - 10 + ..

In relatia (1) facem z = 0,

Identificam apoi coeficientii in relatia (3) si obtinem:

0= —Ag+ 24 = A = — — (2 2
— 0 1 1_22_ 9 ’

162 4 9 1-3)\?2
A1:A0—O32A1—|—2A2:>A2:%: ﬁ
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25 1-3-5\2
O:_A0+C42A122—C'§A224+A326:>A3:ﬁz <2,4.6)

In mod analog obtinem

1-3---(2k—1)]°
A = *
k { 2 4. (2k) } ,Vk € N

Revenind la relatia (1) obtinem

1 (! ? 2, (13 ? i, (L35 2 0
MI+z,1—z) o) © T \21) " T\2a6) "

Sau

1 K132k -1
) M(1+x,1—x)_1+;[ 54 (2k) } o

Dezvoltam acum in serie integrala K (z).
Pentru aceasta vom dezvolta integrantul lui K (z) in serie binomiala si
vom integra termen cu termen seria astfel obtinuta.

1y (1 _
(1 — 22 sin? t)_% =1+ <—%) (—x2 sin® t) + ( 2) (2|2 1) zrsintt+ ..+

(=3) (=2 -1 .. (-2 —1-k) (1) 2% sin?* ¢ 4 ... =

+ I x
> INF1-3-..(2k—1
k=1 ’
>~ 1-3-...(2k—1
=1 -|-Z 2’€(k| >x2k sin?* ¢.
k=1 ’

Deci, integrand seria de mai sus :

/2 22k — D,
K (I‘) = /0 [1 + Qk—k!xjk SIDZkt dt =

k=1

/2 2 (9k — 1)l
m ook s 2k
—— E A— A tdt
2+/0 2 L] " sin
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sau

T (2k— DI %/”/2.%
5) K(z)==+ — =z sin“” tdt.
5) @) =5+ > T |

Sa calculam acum

/2 /2
I, = / sin” tdt = / (—cost)sin™ ! tdt =
0 0

/2
= —costsin" 't ‘3/2 +(n—1) / cos® tsin™ ? tdt =
0

w/2
=0+ (n— 1)/ (1 —sin*¢)sin" ?tdt = (n—1)I,_o — (n—1)1,
0

Deci :

n—1

Ln=(n=-1)1,s—(n—1)IL,=nl,=n-1)1,,=1,= I, .

Ly=%s1 = foﬂ/Qsintdt: —cosT 3/2 =1

Deci avem: )

I2 = 5107

3

I4 = 11—27

de unde

Iy = =22 S =
24677 2 2 (2n)1l 2
2
-[325117
4
]5__137
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6
I? - 51—57
2n
I, e
2n+1 o1 m—1
de unde
246  2n (2!

Iyt = ==, = .
T35 41 (2n+ 1)

/2 (2k—1D!7
o . 2k . .o
ng = /0 sin“® tdt = —<2]{7)” 5

Am obtinut ca:

Asgadar, revenind la (5):

T = (2k—1! , (2k—1"7r T =72k =D
K (z) == =2 Z
@ =3+ g 20! 2+22 ECTTIER
k=1 k=1
Deci, din (4)
T 1
K(z) ==
N VA Ry
sau -
MOA+z,1-1)=
(1+z,1—2) 2K (@)

Demonstratia lui Legendre

Aceasta demonstratie a fost obtinuta de Legendre in 1825 utilizand o idee a
matematicianului englez Landen (1719 — 1790).
Fie (an)n st (bn)n sirurile mediilor aritmetice, respectiv geometrice, care

converg la limita comuna M (a,b) si fie, Vn € N, x, = i_ b%; atunci
n
. 2 _ 2
x, — 0. In plus, g = ——— = = (vezi demonstratia corolarului 2.2.6)
iar, Vn € N, ¢
(1) Tpt1 = \/7 \/ a"+b" ~ anln =In= b
An+1 a"+b” an + by
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In integrala eliptica completa de ordinul intai K (z /
V1 — 22sin?
facem substitutia:

sin 2t

2 tog = —— 7
(2) &5 21 + cos 2t’

ay a+b

Va2 —b? a—b)

substitutie numita transformarea Landen ( aici xp = =
Diferentiind relatia (2) obtinem:

ds  2(1+ x;cos2t)
cos?s (w1 + cos2t)?

(3)

Sa calculam acum

ds cos? s ds

- - - ’ )
V1 —a?sin’s /1 —alsin®s cos’s

Din (3) obtinem

ds 1 21 + @ cos 2t)
\/1—x%sin23 \/1—|—tgs \/1 + (1 — 23)tg?s (1 + cos 2t)?

2(1 + 1 cos 2t)
\/1 4 sin"2t sin® 2t \/1 + sin? 2t (1'1 4+ cos 2t)2

(z1+cos 2t (xl ~+cos 2t)2

\/(xl—l—l) — 211 - 2sin® t (w1 +1 \/1— 4’“2311115

Din relatia (1) obtinem

4a—b
e T4 Fb _ag—bQ_xQ
2 (ab 2 2 -
<x1+1) (a_+b+1) a

Inlocuind in relatia de mai sus obtinem

ds 2dt

V1 —z?sin®s a (r1+1) -1 —22sin’¢
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sau
dt T+ 1 ds

(4) 2. 2wl o
vV 1—2x2sin”t 2 /1 —x7sin®s

Deoarece t € [O, %] ,2t € [0, 7] si deci exista un ¢y € [O

x . . A
,5} unic aga ncat

cos 2tg = —x;. Atunci:
w/2 p to p w/2 p
t t t
K (z) = / e / + /
V11— 22sin’t V1 —22sin’t V1 —22sint
0 0 to
Observam ca atunci cand t 1 tg,cos 2t | cos2ty = —x; = tgs = msjrn—czzgt
+00 = s — § iar atunci cand t | fpcos2t T cos2ty = —x; = tgs =
sin 2¢ s
x1+cos 2t - T =S5 2
Deci:
i d / d
1+x s 1+z 5
K@= [0 —— [ — -
2 1 —2?sin’s 2 1 —a?sin®s
0 —7/2
w/2
1+ T / ds
2 1 —2?sin’s

—7/2
Dupa n iteratii deducem ca:
(5) K@)=04z1) (1 +x2)... 1 +x,) K (2,).

Utilizand din nou relatia (1) obtinem 1+ x; = akf?i_b;_l = == si atunci

relatia (5) se scrie
(6) K(z) =2 . K(z,),Yn € N,

Qp
Trecand la limita in relatia (6) obtinem

a

K@) = 3

s
2

care, in baza celor observate in demonstratia corolarului 2.2.6, reprezinta

chiar concluzia teoremei 3.1.11. .
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2.2.5 Observatie. Transformarea Landen a fost introdusa in anul 1771.
Exista mai multe versiuni de transformari Landen. Cel mai adesea, trans-
formarea Landen este exprimata printr-o egalitate intre doua diferentiale de
forma relatiei (4) din demonstratia precedenta.

Rezultatul din teorema 2.2.4 permite obtinerea lui M(a,b) oricare ar fi nu-
merele pozitive a si b.

2.2.6 Corolar.

™

M(a,b) = ,Va,b > 0.

) /3 dt
0o Va2sin®t+ b2cos?t

Demonstratie. Fie
w/2 w/2
_1 1
I(a,b) = / (a®sin®t 4 0% cos®t) * dt = / (a®cos®t + b*sin®t) 2 dt.
0 0

Observam ca
/2
I(a,b) = / (a® (1 —sin®¢) + b*sin® t)fé dt =
0
/2
= - /a [a® (1 —sin*¢) +bZSin2t]_% dt =

0

1
a? — a?sin’t + b%sin’ t] 2

w/2
1
= _ dt =
a/{ a?
0
w/2 1 /2
1 2_b2 2 1
:_/{ _ ¢ 5 sith} dt:—/[l—m281n2t] 2dt = -K (),
a a a a
V&R
unde r = —.

a
Pe de alta parte, tinand cont de punctele (ii) si (iii) ale observatiei 2.2.2,
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1 1
M(l—l—x,l—x):M<1+—\/a2—b2,1——\/a2—62) =

a a
- M (1+L11\/a2b242r1¢11\/a2b2’ \/(1 + % /ag — b2) (1 _ %‘ /a2 — b2>) —

=M (1, 1——“2—;’2) :M(Ldﬁ—i) =

— 0 (L2) = M (2.8) = 1M ()

a’a
Si atunci, folosind teorema 2.2.4, avem:
i

M(a,b)=a-M(1+z,1—2x)=

™

2. K(z) 2-I(a,b) -

2.3 Integrale eliptice; formula lui Legendre

In acest paragraf vom introduce si integralele eliptice de specia a doua si
vom demonstra formula lui Legendre care leaga cele doua tipuri de integrale.
Rezultatele pe care le stabilim vor fi utilizate in ultimul paragraf pentru
obtinerea unor formule de calcul al perimetrului lemniscatei lui Bernoulli si
al elipsei.

2.3.1 Definitie. Integrala

E (x) :/\/1—x28in2tdt,|x| <1
0

se numeste integrala eliptica completa de specia a doua.
Reamintim ca integrala eliptica completa de specia intai este:

lz| < 1.

3 dt
K(x):/ PR
0 A1 —a2sin“t

In cele ce urmeazi prezentam o formula care leaga cele doua tipuri de
integrale eliptice, formula datorata lui Legendre.

2.3.2 Teorema. Fie x € (0,1) i fie 2’ = /1 — 22; atunci:

(L) K(@)E(@)+ K((@)E(x)=K () K (z') + g
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Demonstratie. Fie c = 22 §i ¢ = 1 — ¢; atunci formula (L) revine la

(1) k(c)-e(l—c)+k(l—c)-e(c) :k(c)-k(l—c)+g,0<c< 1,

unde k(c

z dt 3

) = / ————— lar e(c) = / V1 —csin®tdt. Fie functia
0 V/1—csin?t 0

[:(0,1) — R definita prin:

l(c) =e(c) k(1 —c)+e(l—c)-k(c) —k(c) - k(1—c).

[ este functie derivabila pe (0,1); sa calculam derivata sa.

3 —sin’t 1 31 —csin?t—1

d@:/-—————t:— dt,
0 2v/1 — csin’t 2¢ Jo V1 —ecsin?t

de unde

(1) €'(c) = o~ le(c) = k(o).

2) K(e) = —k(e) + o / R

2c 2c (1—csin®t)2

Pentru evaluarea termenului al doilea din (2) observam ca:

/
int cost ~1 1 1
) ( sint cos ) _¢ ) ~ 4+ = -1 —csin’t.
2 C

V1 —csin®t ¢ (1—-csin®t)

Daca integram relatia (3) in raport cu ¢ pe intervalul [0, 7] obtinem:

1 3 1
0" -/ L
0 ( c

¢ 1 — csin®t)2

t

si deci, revenind la relatia (2):

(4) K(c) =
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Evident ca [e(1 —¢)] = —€/(1 —¢) si [k(1 — ¢)]' = —K/(1 — ¢); utilizand
formulele (1) si (4) obtinem, Ve € (0, 1),

/(c) = Qlc-e(c) k:(l—c)—ic KO 4 (1 —0) 5 e(c) (l—c)+% () h(1—c)—
_% e(1—c) k(c)—i—%.k(c) k(l—c)+2id e(c) 6(1_6)_%./@(6) e(1—c)—
—220, e(c) /f(l—c)+2ic-k(c) k(1_6)+2(130’ e(l—c) k(c)—%-k(c) k(1—c) =

1 1 1 1 1 1
= (% + 50 200/) e(c)-k(l—c)+ (_2_0 ~ 50 + 200’> e(1—c)-k(c) =0.

Deoarece derivata functiei [ este zero pe intervalul (0, 1) functia este constanta
pe acest interval; fie [ € R asa fel incat:

(5) 1(c) = lp,Ve € (0, 1).

Pe de alta parte,

J

l(c) = (elc) = k(c)) - k(1 —c) +e(l —c) - k(c) .

-~ -~

l1(c) l2(c)

2 in?¢ 3 dt
|11(C)|:c./ Ldt-/ dt <
0 \/1—csin’t 0 Vcos?t+ csin’t

2 dt
< —di
0 Vccos?t+ csin’t

Sau

T 3 sin®t
1(c)] < Ve =- / ————dt i deci lim/y(c) = 0.
2 Jo +/1—csin?t =0
Deoarece .
limly(c) = /2 vV cos? tdt - T _ :
c—0 0 2 2
rezulta ca -
i ife) = 5
Din (5) insa
hml(c) = lo

c—0
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si deci lp = 7. Rezulta atunci ca
l(c) = g,Vc € (0,1)

ceea ce Incheie demonstratia. .

2.3.3 Observatie. Sa remarcam ca daca z = LZ atunci x = 2’ i deci

formula lui Legendre se scrie sub forma simplificata

() () ()5

Vom utiliza aceasta forma redusa a formulei lui Legendre pentru a demonstra
o formula integrala interesanta.

2.3.4 Corolar.

i (G5) = [ i B(f) - [ i

st astfel relatia din observatia precedenta devine

IS

1 1 1 12
0 \/1—564 0 \/1—%4

Demonstratie. In integralele

()\/_/\/2_7 2(5)- /“2‘70”

facem schimbarea de variabila cost = x si obtinem:

1 (' 1422

K (%) _ \/5/01 ﬁdm si respectiv 2 (%) =% | ==

Inlocuim acum aceste valori in forma redusa a formulei lui Legendre (vezi
observatia 2.3.3) si obtinem

de unde rezulta imediat relatia de demonstrat.
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2.3.5 Observatii. (i) Formula din corolarul precedent a fost demonstrata
pentru prima data de Euler, in 1782; formulari echivalente au fost stabilite
mai devreme de Landen si de Wallis.

(ii) Daca in integrala fol \/f—dex facem schimbarea de variabild 1 — 24

22, obtinem:

1 2 1
x 1 1
——dr = - ——dzx
0 \/1—:134 2 0 \/1—1‘2
si astfel formula de mai sus revine la:

™

L | L |
| = =g
2.4 Perimetrul lemniscatei si al elipsei

Perimetrul lemniscatei

Functiile eliptice si integralele corespunzatoare igi datoreaza numele proble-
mei rectificarii arcului de elipsa, insa problema cu adevarat fructuoasa a fost
rectificarea arcului de lemniscata.

In 1694, Jacob Bernoulli publica in Acta Eruditorum un articol despre o
curba “ce are forma cifrei opt”. Bernoulli a numit acesta curba lemniscata
(lat. lemniscus = panglica).

Proprietatile generale ale lemniscatei au fost studiate de Giovanni Fag-
nano (1715-1797). Fagnano arata cum se poate dubla arcul de lemniscata
cu rigla gi compasul. Euler se ocupa si el de acesta problema stabilind un
rezultat general de adunare a arcelor de lemniscata.

Dupa aproape o jumatate de secol de la descoperirea lui Euler a teore-
mei de adunare a arcelor de lemniscata, Gauss inverseaza problema, privind
coordonata radiala r ca functie de lungimea arcului. Daca se presupune ca
r 1gi schimba semnul cand trece prin zero, functia ce se obtine este calitativ
similara cu functia sinus si se numeste sinusul lemniscatic. Este periodica
cu o perioada egala cu perimetrul lemniscatei. Gauss extinde acesta functie
in planul complex obtinand astfel prima functie eliptica (dublu periodica
si meromorfa); perioada reald a acestei functii se exprima cu ajutorul in-
tegralelor eliptice de prima specie si astfel poate fi aproximata cu ajutorul
algoritmului mediilor aritmetico — geometrice ale lui 1 si /2; ulterior, Gauss
arata ca media aritmetico - geometrica este, in general, strans legata de pe-
rioadele functiilor eliptice.



66 CAPITOLUL 2. RECURENTE LINIARE SI NELINIARE

Lemniscata se poate defini ca locul geometric al punctelor din plan pen-
tru care produsul distantelor la doua puncte fixe este constant. Bernoulli
considera punctele fixe din plan F1(—\/L§, 0) si Fg(%, 0) iar constanta pro-

1

dus 5. Este usor atunci sd obtinem ecuatia pe care trebuie sa o satisfaca

coordonatele (x,y) ale unui punct generic de pe lemniscata
(122 + y2)2 — 1'2 . y2‘
Daca trecem la coordonate polare:

{ T =rcost

y = rsint ,r>0,t€l0,2m),

obtinem ecuatia in coordonate polare

r? = cos 2t.

Aceasta curba este simetrica fata de cele doua axe de coordonate si atunci
vom studia doar comportarea ei in primul cadran, restrangand domeniul de
variatie a argumentului ¢ la intervalul [0, 7]. Obtinem atunci din ecuatia in
coordonate polare a lemniscatei

1472
cost = 5

3 ,r€0,1].
it —
sin 5

Intorcandu-ne la ecuatiile in coordonate polare obtinem ecuatiile parametrice
ale lemniscatei: .
xr=—=Vr2+rt
\{§ ,7 € 10,1].

2 _ 4
) 32
Functiile = si y sunt derivabile si
, 1+ 202
= ——
V2V 42
1—2r? '

[
yr ﬂm
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Atunci

Y, =" = re[0,1).

Prezentam mai jos un tabel de variatie si un grafic al lemniscatei in primul
cadran.

Yy
V3
v 10 2v2 ! (ﬁ L)
gt o+ 0 = (o) | PR
1
y() 22 0 T

Folosind simetria curbei fata de axe obtinem graficul complet al lemnis-
catei lui Bernoulli.

Lungimea acestei curbe este:

1 1
1
L=4-[ @)+ (y)xd _4-/—d.
Ve = [ g

Am remarcat in corolarul 2.3.4 ca

si deci
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Din teorema lui Gauss (teorema 2.2.4) si din observatiile 2.2.2 obtinem:

K( 1 ) B T B T B T

2) 9. 11_1) 9. ) V2 M(V2,1
v2) 9 M<1+\/§,1 ﬂ) 2 M(l,ﬁ> V2 M(V2,1)
si deci lungimea lemniscatei va fi:

2T

M(v2,1)

Fie (an)nen $i (bp)nen sirurile algoritmului mediilor aritmetico-geometrice
pentru care ag = v/2 si by = 1. Atunci b, T M(v/2,1) si a, | M~/2,1) si deci

2T 21
— 1L —.
ap by,

Putem folosi algoritmul (A — G) pentru calculul aproximativ al lungimii
lemniscatei. Vom da o formula pentru evaluarea erorii in acest calcul:

L-" <2 T 9n(a, — by)

si conform relatiei (x) din propozitia 2.2.1,
2 vio1\"
L—1<16n-< 8_ ) Vn € N.

Daca, de exemplu, vrem sa calculam lungimea lemniscatei cu trei zecimale
exacte rezolvam inegalitatea

217,
2-1
167T-<\/_ ) <1073,

8

22
Pentru n = 2 obtinem 167 - (¥31)" = 0.000361.. < 107, Rezult ci

27 : L o : S :
— va da primele trei zecimale exacte ale lungimii lemniscatei lui Bernoulli.

ag
Obtinem:
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2
T 4.442882938158366...
ao
2
b—ﬂ — 6.283185307179586...
0
21
a; = 1.207106781186547... - = 9-205161138274292...
by = 1.189207115002721... o
ay = 1.198156948004634... 7, — > 2BI00SO0HIELES. .
by = 1.108123521493120... * 2T 041957250505
az = 1.198140234793877... ag
by — 1.198140234677307... i_ﬂ — 5.944188261448521...
2
2
T 5.244115108329133...
as
2
b—” = 5.244115108839346...
3

Observam ca 5.244 este o aproximare cu trei zecimale exacte a lungimii
lemniscatei; in plus rezulta ca pentru n = 3 se obtine o aproximare a lungimii
lemniscatei cu 9 zecimale exacte. Aceasta crestere rapida a exactitatii se da-
toreaza vitezei de convergenta a lgoritmului mediilor aritmetico-geometrice.

Perimetrul elipsei

Incd de pe vremea lui Kepler si Euler s-a incercat gisirea unei formule pentru
calculul lungimii elipsei. In 1602, Kepler afirma ca orbita lui Marte este un
oval. Mai tarziu a descoperit ca, de fapt, era o elipsa cu Soarele intr-unul
din focare (Kepler a fost cel care a introdus cuvantul “focar” in 1609). Deci,
motivul initial pentru gasirea unei aproximari pentru perimetrul elipsei a fost
dorinta de a calcula cu acuratete orbitele eliptice ale planetelor.

Nu exista o formula pentru lungimea elipsei care sa utilizeze functiile
elementare; daca in cazul lemniscatei, lungimea se exprima cu o integrala
eliptica de prima specie, lungimea elipsei se exprima cu o integrala eliptica
de specia a doua.

Elipsa poate fi caracterizata ca fiind locul geometric al punctelor din plan
pentru care suma distantelor la doua puncte fixe este constanta.

Ecuatia implicita a elipsei este:

22 2

Stp-l=0
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Elipsa poate fi data si prin ecuatii parametrice:

T = aCoSst,
{ y = bsint ¢ € [0,27]

si atunci, printr-un calcul elementar, obtinem ca perimetrul elipsei, L, este:

L = L(a,b) /\/ H)]? dt = /\/a281nt+620052tdt

=1. / \/a2smt+b%os2tdt*4 / \/a20082t+b2smtdt

a?

2_b2
=4a- / \/1— smtdt—4a E(z), unde 2? = = :

In relatia de mai sus am presupus ca a > b > 0 iar F(z) este integrala eliptica
completa de specia a doua (vezi definitia 2.3.1).

Dupa cum ne-am fi agteptat, primul impuls in ceea ce priveste gasirea
unor metode pentru calculul perimetrului elipsei provine din astronomie. In
1609, Kepler a oferit o prima aproximare : L =~ w(a +b) g1 L ~ 2wV ab
desi argumentele sale nu erau foarte riguroase, iar 2rv/ab era doar o limit
inferioara a lui L. Kepler a observat ca elipsa cu semiaxele a si b si cercul de
raza v ab au aceeasi arie. Cum cercul are o circumferinta mai mica, rezulta
c& L > 2mv/ab. In plus, Kepler remarcd faptul c& (a+0b) > 2v/ab si atunci
afirma ca:

L=mn(a+Db)

Kepler pare sa foloseasca curiosul principiu potrivit caruia doua cantitati mai
mari decat un acelagi numar sunt aproape egale.

Aproximari ale lui L sunt numeroase in literatura matematica, ele de-
pinzand de valorile lui a si b si fiind cu tat mai precise cu cat excentricitatea
elipsei, z = ¥ “Z‘bQ este mai mica.

In cele ce urmeazi vom prezenta o metods de aproximare a perimetrului
elipselor pentru care semiaxele sunt legate de relatia: a = /2 - b. In aceasti
situatie x = \/5 iar perimetrul este:

L:4a~E<i>.
2

S
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Folosind forma redusa a formulei lui Legendre (vezi observatia 2.3.3), obti-

nem:
wa

L:2a-K(%)+@.

Deoarece

V2] V2 M(V2,1)
T
L=vV2a - |———+M \/5,1].
[M (vV2,1) vz
S& presupunem, pentru simplificare, cid a = /2; utilizand iardsi sirurile

algoritmului mediilor aritmetico-geometrice (a,)neny $1 (bn)nen pentru care
ap = V2 si bp = 1. Atunci

z(bn+1)TL¢2(an+1>
an b,

L—2<bn+1> < 16(1 + ) (‘/__1>2 ,Vn € N.

si deci obtinem

n 8

Pentru n = 2 vom obtine perimetrul elipsei cu trei zecimale exacte:
L = 7.640.... Pentru n = 3 se determina primele 8 zecimale exacte:
L = 7.64039557....
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Capitolul 3

Elemente de analiza
asimptotica

Analiza asimptotica este o ramura importanta a analizei matematice. Studiul
comportarii la limita a unor obiecte matematice complicate (functii definite
prin integrale cu parametri, solutii ale unor ecuatii diferentiale etc) nece-
sita unele metode si tehnici speciale. Una dintre aceste metode, initiata de
Laplace, utilizeaza faptul ca studiul comportarii la infinit al unei functii de
tipul

g
f(t):/ O(t, z)dx

se poate face studiind maximul max, ®(¢,x) si apoi integrand functia ® nu-
mai pe o vecinatate a punctului unde maximul este atins. Aceasta integrare
se poate face aproximand functia ® prin functii mai simple. Rezultatul este
de obicei o dezvoltare asimptotica a functiei f. Desi metoda utilizeaza aceasta
tehnica generala, aplicarea ei practica se face in mod diferit de la caz la caz.

In primul paragraf se amintesc definitiile simbolurilor O si o ale lui Landau
si se dau mai multe exemple care sa faciliteze intelegerea corecta a lucrului
cu acestea.

Se definesc sirurile asimptotice si apoi se defineste, dupa Poincaré, dez-
voltarea asimptotica a unei functii. Se dau mai multe exemple de serii
asimptotice care nu converg la functia din a carei dezvoltare provin sau care
reprezintd dezvoltiri ale unor functii diferite. In finalul paragrafului se stu-
diaza operatii cu dezvoltari asimptotice.

Al doilea paragraf este dedicat studiului aproximarilor asimptotice ale
diverselor integrale cu parametru.

73
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Se prezinta metoda lui Laplace de dezvoltare, insistandu-se asupra impor-
tantei gasirii unor dezvoltari asimptotice divergente. Se evalueaza integralele
de tipul ffooo e‘tf"’kad:c, integrale utile in dezvoltarile asimptotice ulterioare.
Se prezinta lema lui Watson gi se dau exemple de comportari asimptotice.
Unul dintre exemplele reluate in diverse moduri si cazuri particulare vizeaza
obtinerea de conditii pentru dezvoltarea asimptotica a integralelor de tipul

B
/ g(x)e" @ dy.

O importanta aparte o are prezentarea comportarii asimptotice la infinit a
functiei I' (formula lui Stirling) comportare studiatda in ultimul paragraf al
capitolului.

3.1 Siruri si serii asimptotice

Simbolul O

3.1.1 Definitie. Fie f si ¢ doua functii definite pe o multime oarecare
A CR. Spunem ca f = O(p) (z € A) daca IM > 0 astfel incat

|f(z)] < M -|p(z)|, pentru Vo € A. Relatia se citegte: “f este de ordinul o
mare a lui ¢ pe multimea A”.

Daca ¢(x) # 0, Vo € A, atunci conditia de mai sus este echivalenta cu

marginirea functiei = pe multimea A.
2

3.1.2 Exemple.
1. 22 = 0(z) (Jz] < 2)
2. sinx =0O(1) (z € R)
3. sinx = O(x) (x € R)

De multe ori ne intereseaza sa comparam f cu ¢ doar intr-o portiune a
multimii A, in special unde informatia nu este triviala. De exemplu formula
sinz = O(z) (x € R) ne intereseaza doar pentru valori mici ale lui |z|.

3.1.3 Definitie. Fie f si ¢ doua functii definite pe multimea A si fie xg
un punct de acumulare pentru A. Spunem ca f = O(y) (x — z¢ ), daca
exista o constanta pozitiva M si o vecinatate V a punctului xq astfel incat
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|f(x)] < M -|o(x)| pentru x € VN A\ {zo}. Relatia se citegte: “f este de
ordinul o mare a lut ¢ cand v — xq”.

Altfel spus f = O(p) (x — zo ) daca exista o vecinatate V' a punctului
zo aga fel incat f = O(p)(z € VN A\ {xo}).

In continuare vom considera de multe ori pe xy = 0 sau oo , deoarece

aceste cazuri apar de cele mai multe ori in aplicatii; orice zy poate fi trans-
1

T —x0
Astfel, aplicand definitia de mai sus pentru xy = 400 obtinem: f = O(yp)
(r — oo ) daca exista numerele reale M si a astfel incat

|f(x)] < M -|p(x)| pentru z € A, a < z.

format in 0 sau oo , prin schimbarea de variabila £ = x — 2y sau £ =

3.1.4 Exemple.

1. 22 =0(z) (z = 0)

2.e"=0(1) (z — o0)

3. (lnz)™=0(1) (r - o0)

4. z = 0(z*) (x — 00).

Sa studiem cateva formule ce implica simbolul O.

Formula O(z) + O(2?) = O(z) (x — 0) se interpreteaza astfel: Vf si g
doud functii astfel incat f(z) = O(x) (z — 0) si g(z) = O(z?) (z — 0) are
loc f(z) + g(x) = O(x) (x — 0).

In mod analog se interpreteazs formulele: O(z) + O(2?) = O(22) (xz — o),
%M = 0O(1) (o0 < 7 < 0)

Formula e™® = 1+ z + O(z?) (z — 0) implicd existenta unei functii f
astfel incat f(z) = O(2?) (x = 0)sie ™ =1+z+ f(z).

Formula z7'0(1) = O(1)+O(272) (z > 0) se interpreteaza astfel : pentru
orice functie f cu f(z) = O(1) (z > 0) exista doua functii g si h, g(z) = O(1)
i h(z) = O(x7%) (0 <z < o00) astfel incat = f(z) = g(x) + h(z) .
Justificarea este simpla:

Consideram g(x) =0 i h(z) =z ' f(z) daca 0 < z < 1 i g(x) =z~ f(z) s
h(z) =0 daca = > 1.

Este evident ca semnul “=" este nepotrivit pentru astfel de relatii deoa-
rece sugereaza simetrie si aici formulele nu sunt simetrice.

De exemplu, formula O(z) = O(z?) (x — oo ) este corectd, dar O(z?) =
O(z) (x — o0) este falsa.

Fie ¢ si ¢ doua functii astfel incat ¢ = O(v)) (z — oo ) este adevarata si
1 = O(p) (x — oo ) este falsa. Daca o a treia functie f satisface
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(1) f=0(p) (& = o)
atunci evident satisface
(2) f =0() (x = o0).

Formula (1) este o rafinare a formulei (2). Spunem ca o formula este cea
mai buna posibil daca nu mai poate fi rafinata, adica daca exista doua
constante pozitive M si m astfel incat m |p(z)| < |f(z)| < M |p(z)| pentru
un z suficient de mare. Acest fapt este echivalent cu a spune ca f = O(p)
(x = 00) sica o =0(f)(r — 0).

De exemplu, formula 2z + z - sinz = O(z) (z — oo ) este cea mai buna
posibil, deoarece x < 2-x + x-sinx < 3- .

Daca m este un intreg pozitiv, atunci estimarea

(3) e = O(x™™) (x — 00) este adevarata. Dar (3) nu este cea mai buna
posibil pentru nici o valoare a lui m, deoarece e = O(z™™ ') (z — oo )
este Intotdeauna o rafinare.

Vom discuta acum problema uniformitatii. fncepern cu un exemplu.

Fie f si g doua functii definite pe o multime A si m un numar pozitiv.
Atunci este adevarata formula:

4) (f+ 9™ =0(f")+0(g™) (z € A)

Justificarea este simpla.

(F(@) + g@)™] < (f(@)] + lg(@))™ < {2 max(|f(@)],lg(@)]}" <
<2 max([f(@)]" Jg(@)[™) < 27 (@)™ + |g(x)|™).

Din formula (4) rezulta ca exista doua constante M si N astfel incat

(F(@) + g(a)™] < M- |f@)|" + N - |g(a)|™ (@ € 4).

Observam ca M si N depind de m.

Pe de alta parte, in formula

(5) (#)m:o(%ﬁ (l1<z<oo)

putem gisi o constantd independentd de m (0 < m < oo ): #2+m? > 2-m-x,

. m " 1

deci [ ———— <
x? + m? (2-z)m
Deoarece 2™ < 1 pentru orice m > 0, rezulta ca exista un numar pozitiv
M, independent de m (de exemplu M=1) astfel incat
m
m M
(—2 2) <—(I<z<oo,m>0).
Te+m zm

Putem exprima acest rezultat spunand ca (5) este verificata uniform relativ
la m. Putem sa analizam formula (5) dintr-un alt punct de vedere. Functia
m™(x? + m?)™™ este o functie de dou# variabile x si m si de aceea poate fi
considerata ca o functie de un punct variabil in planul (x, m). Uniformitatea
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formulei (5) se poate exprima si astfel
m
(%) :O<Lm) (I<z<o00,0<m<o0).
e+ m z
Pentru aceasta formula, multimea A specificata in definitia 3.1.1 este porti-
unea planului descrisa de 1 <z < o0, 0 < m < o0.

In formulele ce implicd simbolul O pentru ( & — oo ), existd doud con-
stante implicate (M si a in definitia 3.1.3). Vom vorbi de uniformitate in
raport cu un parametru m doar daca ambele constante M si a pot fi alese
independent de m.

Sa studiem urmatorul exemplu:

Pentru fiecare m, m > 0 este adevarata formula

m*(1+m-2?)"' =0(x™"!) (x = o0 ).

Dar aceasta formula nu este adevarata uniform. Daca ar fi aga atunci ar

exista doua numere pozitive M si a, ambele independente de m, astfel incat
m?>(1+m-2?)t<M-z7! (z>a,m>0).

Daca considerdm m = x? | obtinem M - (1 + z*) > z° pentru z > a , ceea

este imposibil.

Pe de alta parte, una din cele doua constante poate fi aleasa independent de

m. Putem considera a=m si M=1 deoarece

m*(l+m-2?) P <m-z2<l-27' (z>m m>0).

Putem considera de asemenea a = 1 §i M=m deoarece m?(1 + m - z?)7! <
m-z2<m-zl(x>1,m>0).

Simbolul o

3.1.5 Definitie. Fie f si ¢ doua functii definite pe o multime oarecare A.
Spunem ca f = o(p) (z — o) (se citegte: “f este de ordinul o mic a lui ¢
cind x — x0”), daca Ve > 0 , exista § > 0 astfel incat |f(z)| < e- |p(z)]
pentru 0 < |z — zo| < §,z € A.

Daca ¢(x) # 0 intr-o vecinatate a lui x¢ (exceptand zy), f = o(p)(z — xo)

este echivalenta cu lim S@) — 0.
T—T0 90 €T
Daca f = o(p) (x — xo) atunci f = O(p)(z — x¢ ) deoarece convergenta

implica marginirea.

3.1.6 Exemple.
1. cosz =1+ o(x) (x — 0)
2. ¢°@ =14 o(z) (x —0)



78 CAPITOLUL 3. ELEMENTE DE ANALIZA ASIMPTOTICA

3. o(f(x) - g(x)) = o(f(x)) - O(g(z)) (z = 0)
4. o(f(x) - g(x)) = f(x) - o(g(z)) (x —0).

Se pot face numeroase operatii cu formule ce implica simbolurile O si o.
Ca un exemplu sa presupunem f,, = O(g,) pentru n=1,2,3,... , N.
Atunci

N N
Y an - fulz) =0 (Z |ay - |gn(x)]) , unde a,, sunt constante reale.
n=1 n=1

Justificarea este urmatoarea:
Deoarece f, = O(g,) , exista prin definitie o constanta reala pozitiva A,
astfel incat |f,(x)] < A, - |gn(z)] . Fie A =max A4, , n=1,2,3 |N. Atunci

N N N N
> 00 (o) < 3l S £ 3 ol (0] < A+ ol L)
n= n= n= n=
care implica relatia de mai sus.
Alte rezultate a caror justificare o propunem:

1. Daca f = O(g) atunci |f(z)|* = O(|g(x)|") pentru a > 0 .
2. Daca f; = O(g;) , i=1,2,3 , nsi |gi(x)| < |g(z)| , atunci

2 a; - fi(x) =
O(g(z)) unde a; , i=1,2,.. , n sunt constante.

3. fi=0(g:),1=1,2,3,, n atunci [[\_, fi(x) = O([T_, 9:(x)) .

Daca in formulele de mai sus simbolul O este inlocuit de simbolul o,
formulele raman adevarate.

Relatiile cu ordine pot fi integrate dar nu pot fi in general derivate. Daca
o functie f este o functie de doua variabile z §i y i f = O(g) (v — x )
atunci de obicei (dar nu intotdeauna)

%ﬁ:,y) = 0 w> (x — zp). Cu toate ca anumite rezultate
Y Y

sigure pot fi date pentru diferentiere, in practica fiecare caz este mai bine sa
fie considerat separat.

3.1.7 Definitie. Spunem ca o functie f este asimptotic echivalenta sau
asimptotic egala cu o functie g si scriem f(z) ~ g(x) (r — x¢ ) daca
f(@)
g(x)

fla) = g(x)(1 + o(1))(x — o), f =g+ o(g)(x — o) sau f(z) = e”Wg(z).

lim, = 1. Relatia f(z) ~ g(z) poate fi scrisa in mod echivalent

Exemple:
lL.z+1~z (2 — ).
2. 22 +zlnz ~ 22 (x = 00).
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>+ zxlnz ~zlnz (z — 0).
chz ~ 1 (z — 0).
chz ~ 2e” (z — o0).

6. n! ~ e "n""/2mn (n — 00).

A determina “comportarea asimptotica” a unei functii date f cand r —
xo Inseamna a determina o functie simpla g care este asimptotic echivalenta
cu f. Aici simpla inseamna ca evaluarea sa explicita nu este dificila daca x
este foarte mare.

AN

Serii asimptotice

3.1.8 Definitie. O functie f este dezvoltabila in serie de puteri in jurul
punctului z, daca exista r > 0 aga fel incat f(x) = > an(x — x0)", oricare
ar fi z cu |z — x| < r.

a
f este dezvoltabila la infinit dacd existd R > 0 asa fel incat f(z) = > 0" —,

x
oricare ar fi z cu |z| > R.

Fie (S,(x)) sirul sumelor partiale a uneia dintre seriile de mai sus. Deci
n n

Sp(z) = > am(z — x0)™ sau Sy(z) = S atunci [f(z) — Sp(z)] — 0

m=0 m
pentru (n — 0o) . Astfel cand n creste, S, () reprezinta o aproximare cu un
grad din ce in ce mai mare de acuratete a lui f.

Daca f nu este dezvoltabila in serie de puteri in jurul punctului in discutie,
putem descrie totusi comportarea sa prin sumele partiale S, (z) ale unei serii
aproximative diferite numita dezvoltare asimptotica. Astfel de serii nu sunt
de obicei convergente dar cu toate acestea |f(z) — s,(z)| — 0 pentru un n
fixat si pentru x tinzand la xq sau la co.

3.1.9 Definitie. Un sir de functii reale, definite pe o multime A, (f,)nens,
este un gir asimptotic pentru x — zy (2o punct de acumulare pentru A),
daca:
1. limg ., fu(z) =0,Vn € N*,
2. Vn € N*, 3V -vecinatate pentru zy a.l. f,(z) # 0,V € VN A\ {zo},
3. fur1 =o(fn)(x = x0),¥n € N*.
frni1(2)

Deci (f,)n este sir asimptotic daca si numai daca lim,_,,, ﬁ =0,Vn €
x
n

N*; aici se subintelege ca f,(z) nu se anuleaza intr-o vecinatate a lui z
(exceptand eventual punctul xg) si ca lim, ., fn(z) = 0,Vn € N*.
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3.1.10 Observatie. Daca sirul (f,,) este un sir asimptotic pentru x —
atunci, Yn € N, O(fn41) = o(fn)(z = x).

Exemple de siruri asimptotice:

1. {(z — xo)"} pentru z — x.

2. {(Inz)~"} pentru z — 0.

3. {e7*x7%} pentru x — oo , unde (a,) este un gir de numere reale cu
Gpi1 > Qp, VN € N.

3.1.11 Teorema. Fie (f,)n>1 un sir asimptotic pentru x — xo §i (an)n>1
R un sir cu primul termen, ay, nenul; urmatoarele afirmatii sunt echivalente:
(i) f(@)= Loy anfalz) +o(fn(2))(@ = z9) YN €N
(1) [(@) = S anfule) + O(fys1(@)) (@ — 70) YN € N
Oricare dintre aceste conditii echivalente antreneaza:

(ii))  f(z) ~ SN anfalz)(z — x9) VN € N*.

Demonstratie. (i) = (ii):
Din (1), f(z) = S0 anful) + anfu(z) + o fn(x)). Rezultid ci existi
g(x) = o fn(2)) asa fel incét f(z) = 32,7 an- fu(2) +an - fn(2) +g(x). Din
g(z) = o( fn(z)), exista 0 > 0 aga fel incat, pentru orice x cu |z — xo| < 0,
lg(z)| < |fn(x)]. Fie atunci M = |ay| + 1; pentru orice z cu |z — xo| <
8.1 f (@) = 05 anfu()| < |ay| - [fx(@)] + [fn(@)] = M- |fx(z)]. Astfel am
demonstrat ca f(z) — SN anfu(z) = O(fn(x))(z — 20), YN > 2.

(il) = (i):

Fie N € N* arbitrar; exista M > 0 si 09 > 0 asa fel incat, pentru orice x
cu |z — xo| < do,

N
‘f(x) - Zanfn(w) <M - |y (o).
n=1
Deoarece lim,_,, In(@) =0,Ve>0,40 ai. 0< 9 <y si Vo cu
fn(z)
0<|z—uz0] <90, f?;é;? < % Atunci
= fva()
‘f(:c) = Do) M| ] < < 1)
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si deci f(z) = S0 anfu() 4+ o( fn(2))(x — x0), VN € N*.

Sa aratam acum ca (ii) = (iii):

Fie N € N* arbitrar; exista M > 0 si g > 0 asga fel incat, pentru orice x
cu |z — xo| < do,

(1) 'f(fﬂ) = anfal@)

Fie ¢ > 0 arbitrar aga fel incat - 32, |a,| < M si fie

<M - |fyp()].

elay |

(2) €1 = Wi > 0.
. fulz) _ _ -
Deoarece lim,_,,, m =0,Yn =2,...N+1, 30 € (0,d) asa fel incat,
1
oricare ar fi x cu |z — x| < 6,
fa(2)
3 <e,Vn=2,..,N+1.
( ) fl(x) 1

Din (1), (2) si (3) obtinem, pentru orice = cu |z — zo| < ¢,

'N__l‘ SR R G
et nfa(2) (@) |ar + 0 a2

fng1(z)
< M | fxnia(z)] <M. fi(=) <
— z — N
A@]- (il =120 an 1) Jar] = e1 2200, ladl
€ € 2]\/[
' = < M- : ol ~Ja] T
1| — oM D n— |an] |ar| — 2 1

ceea ce Inseamna ca

lim —f<x> =
w20 300 an fa()
si deci ca
N
f(x) ~ D anfulz)(@ = ). .

n=1
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3.1.12 Definitie. Fie (f,), un sir asimptotic pentru x — z,; spunem
ca seria > >~ a,fy(x) este o dezvoltare asimptoticd sau o aproximare
asimptotica a lui f(x) cand © — z( daca este verificata una dintre conditiile
echivalente (i) sau (ii) din teorema precedenta.

Aceasta definitie a fost data de Poincaré in 1886.

In continuare vom nota cu f(z) = 0% a, f,(z)(z — x) situatia in care
seria Y a,fn(z) este dezvoltare asimptoticd sau aproximare asimptotica
alui f(z) cand = — .

3.1.13 Observatii.

(i) Vom remarca ca, dacd f(z) &= Y " anfn(z)(x — x0), atunci f(z) =
ar fi(z) + o( fi(x)) si de aici rezulta ca exista lim,_,,, f(z) = 0.

Daca lim, ., f(z) = ap € R sl f(x) —ao = Y o anful(x)(z — x0)
atunci vom conveni sa spunem ca f(z) & Y o a, fn(2)(z — z0) unde notam
f()(l’) = ]_,Vl’ e A

(ii) Daca pentru functia f exista o dezvoltare asimptotica cu girul asimp-
totic dat (f,(x)) , atunci ea este unica, a, fiind unic determinati de relatiile
urmatoare.

ag = lim,_,,, f(x)

filx)
f<x> - a1f1(l‘)
fa(z)
flx) =S an ful)
................... fw(z)

Intr-adevir, din conditia (i) a teoremei 3.1.11, VN € N*, Ve > 0,36 > 0
a.l Vo cul < |z — x| <90,

< e+ fy(x) sau, echivalent,

f(x) - Z n [ ()

-3

f@) =30 an ful2)
fn(x)

Rezulta ca o functie admite o dezvoltare unica in serie asimptotica in raport
cu un gir asimptotic dat.

—ay| <E.




3.1.  SIRURI SI SERII ASIMPTOTICE 83

(iii) Primul termen nenul in dezvoltarea asimptotica > - a,f,(z) este
numit termenul dominant al dezvoltarii si daca, de exemplu a; # 0 ,
scriem f(z) ~ ag + a1 f1(x) (z — x0).

(iv) Relatia f(z) ~ > 0"y anfo(z)(x — ) nu implica faptul ca seria
Y anfa(x) este convergenta. O dezvoltare asimptotica poate, desigur, sa
fie convergenta; daca e asa, este de obicei mai putin folositoare decat daca
ar fi divergenta deoarece in cazul unei serii divergente, pentru fiecare = este
nevoie doar de cativa termeni pentru a da o aproximare buna a functiei.

Clasa seriilor de puteri convergente este cea mai simpla clasa de serii
asimptotice.

Presupunem ci f este suma unei serii de puteri: f(r) = ag+a;r+asr®+...
cand |z| < p, p fiind orice numar pozitiv, mai mic decat raza de convergenta.
Atunci

f(x) = ag + a1z + ax® + ...(x — 0).

Demonstratia este simpla: Vn € N,

n 00 .
‘f(x) - Zakxk = Z apz®| < |z" T Z lag| - |zF L
k=0 k=n+1 k=nt1 )

g?;)

Deoarece lim,_,0 g(z) = |an41|,30 > 0 a., Vo € (=0,9),9(x) < |ap1| +1 =

M. Atunci
'f(x) - Z apx”
k=0

si deci f(z) =Y 1_, axz® 4+ O(z™),Vn € N. Dupa punctul (ii) din teorema
3.1.11 aceasta Inseamna ca

flz) ~ Zanx"(x — 0).

Daca o functie admite dezvoltare Taylor pe o vecinatate a lui xy , atunci
seria Taylor este o dezvoltare asimptotica convergenta.
Exemplul urmator prezinta o dezvoltare asimptotica mai interesanta.

3.1.14 Exemplu.
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Fie functia E : (0, +00) — R definita prin

Sa remarcam ca pentru t = 0, E(t) = I'(0) = 400 si ca limy_,o, E(t) = 0,
deci ag = 0.

Sa gasim o dezvoltare asimptotica a lui E(t) pentru (t — o) .
Integrand prin parti obtinem:

E(t) = [—6:] — [e Ty = = & + [i—;} + 2 [e "z 3dx s
t + ¢ t
repetand procedeul rezulta:
1 1 2t 3 (=) (n—1)!
Et)=e '3 -+ — =+ ...
() =e {t prETp T tn -

+(—1)"n! /e_mx_("ﬂ)dx = 5,(t) + r(t)
t
unde sumele partiale s, si restul r,, sunt:

(1 1 2 3l (—1)"}(n — 1)!
_ t

ra(t) = (—1)”n!/ e g~ g,
¢

Seria pentru care s, este suma partiala este divergenta pentru Vt (fixat)

n—1)!
deoarece termenul general in modul, (t—”) tinde la oo pentru n — oo .

Desigur r,(t) este de asemenea nemarginit pentru n — oo deoarece s, (t) +
rn(t) trebuie sa fie marginit, £(t) fiind marginita; acest fapt este de asemenea
evident din definitia lui r,(¢). S& consideram acum pe n fixat si ¢ suficient
de mare. Atunci:

n!

o |
Ira(t)] = n!/ e %z~ dy < s e "dr = t:ﬁe_t — 0(t — o0).
¢ ¢

Mai mult, pentru n fixat raportul dintre r,(¢) si ultimul termen in s, ()
este:

7 (t)
(n—1)lt—net

n ~
<?—>00andt—>oo
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deci, daca notam cu f,(t) = %&n—l)!’

E(t) — sn(t)
fn(t)
ceea ce este echivalent cu E(t) — s,(t) = o(f.(t))(t = o0) si deci cu
(

E(t) = sp(t) + o( fu(t))(t = 00),Vn € N.

—0

Ultima relatie arata ca

ft) =~ Z (=D (n — 1)! e Mt — 00).

tn

n=1
Folosind relatia (iii) din teorema 3.1.11 obtinem

E(t)Ne_t{l—lJrZ! 3! Jr(—1)”_1(71—1)!

o2 3 tn

}(t — o0),Vn € N.

Partea din dreapta este dezvoltarea asimptotica a lui E(t) pentru t — oo.

Problema care apare acum este cum sa alegem n-ul optim astfel incat
sn(t) sa dea cea mai buna aproximare pentru F(t) pentru un ¢ dat. Evident
pentru ¢ suficient de mare primii termeni din s, vor descreste; de exemplu
21t73 < t72 . Totusi, la o anumitd valoare a lui n, sa spunem N, termenii
cu n > N vor incepe sa creasca succesiv pentru un ¢t dat deoarece al n-
lea termen (—1)" (n — 1)le~*~" este nemarginit pentru n — oco. In clasa
problemelor pentru care acesta este un exemplu, eroarea cu care se determina
s, este de ordinul primului termen neglijat, si deci locul optim este pentru
n = N (desigur N depinde de t). Procedura practica pentru a calcula E(t)
pentru un ¢ fixat este de a evalua termenii succesivi in s,(t) si de a ne opri
cand se obtine primul termen mai mare ca precedentul. Astfel vom afla
n-ul pentru care modulul raportului dintre al (n+1)-lea termen gi al n-lea
termen in s, este cel mai aproape de 1 (dar mai mic decat 1). Raportul este

nle~tt=(+1)

(n—1)le tt—

Convergenta unei serii nu e necesara din punct de vedere computational,
decat daca, desigur, converge foarte repede, deoarece convergenta depinde
de al n-lea termen pentru n nedefinit de mare.

Ceea ce este mai de dorit este o aproximare care cere doar putini termeni.
Aproximarile asimptotice care dau serii divergente, ca in exemplul de mai sus,
sunt 1n mod considerabil mai folositoare din punct de vedere practic.

=nt" ! si deci N = [t].
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Operatii cu serii asimptotice

3.1.15 Propozitie. Fie f,g : A — Ryxg € A si f, : A = R un gir
asimptotic pentru r — xo; presupunem ca:

F) ~ 3 anfula)(z = o) 50

9(2) & S5y b () (& = o).

Atunci, Vo, 5 € R,

o0

af(z) + Bg(r) ~ Z(aan + Bby) fu(x) (2 — 20).

n=0
Demonstratie. VN € N,

N

F(@) =) anful@) + O(fara(@)) (@ — o),

0

Zb fa(@) + O(fry1 (@) (& = o).

Atunci

N

af (2) + Bg(x) = 3 (@t + Bby) fulz) + Ofysa(x)) (& — o).

0

3.1.16 Observatie. Produsul dupa Cauchy a doua serii asimptotice nu este
obligatoriu o serie asimptotica. intr—adevér, prin inmultirea formala a celor
doua serii se obtin termeni de forma a,b,, f,,(x) fin(x) iar sirul (f,, fi)n.m DU
poate fi aranjat, in caz general, ca un sir asimptotic. In cazul particular al

1
sirurilor asimptotice (2"),>1(x — 0) sau (—n) (x — o00) produsele de
- L) n>1
mai sus se pot aranja ca siruri asimptotice.

3.1.17 Propozitie. Fie (an)n, (by)n C R doud siruri arbitrare si fie (¢,), C
R sirul definit prin ¢, = agb, + a1b,_1 + -+ - a,bg,Vn € N; presupunem ca
f,g: A—R.

1). Daca 0 € A, f(z) = >~ yaa™(x = 0) si g(x) = D> " bya"(z — 0)
atunci f(x) - g(z) = Y 7 cax™(x — 0).

2). Dacd +oo € A, (:13) Yo panx (= 00) st g(z) =Y 2 by
(x — 00) atunci f(x)-g(z) =Y 2 cx™(x — 00).
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Demonstratie. 1). Din ipoteza, VN € N, 3f;, 91 : A = R,
filz) = 0@ ) (x = 0),g1(x) = O(z¥* ) (z — 0) a

Zanx + fi(z anx + g1(z

Inmultind cele doua relatii de mai sus obtinem

f(z) - g(z) = (Z anx”> . (Z bﬂﬂ) +

+ (Z anx”> g (x (Z ba" ) z) + fi(x) - g1(2).

Se observa imediat ca

(Z anx”> : (Z b,m") = Z cnt” + Oz (2 — 0)

0 0

: N . N Co . :
sicum ) o a,a” si Y, b,2" sunt marginite pe o vecinatate a lui 0,

(Z ) 1(2) = O )@ 0),

(Z bn:c”) fi(z) = 0@V (2 — 0).

Este evident ca fi(x) - gi(x) = O(xN1)(z — 0) si deci
N
f@)-g(x) = caa™ + 0@ (x = 0),YN €N

ceea ce, dupa teorema 3.1.11 spune ca

ch (r — 0).

Demonstratia punctului 2). este asemanatoare. .
Ne vom ocupa acum de integrarea si derivarea dezvoltarilor asimptotice.
Din motive lesne de inteles vom considera numai cazurile sirurilor asimptotice

(@™ Jnen: (z = 0) 81 (7" )nen (z — 00).
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3.1.18 Teorema. Fie A un interval marginit sau nemarginit si f : A — R
cu proprietatea ca f € R q,V[c,d] C A (f este integrabild in sens Riemann
pe orice sub-interval al lui A).

1). Daca 0 € A" gi daca f(z) = Y o apa™(x — 0) atunci existd o
vecindtate V a lui 0 a.i. f € Rpq, Ve € VN A\ {0} st

/xf(t)dt%i n_. i —0).
0 0

x
n+1

2). Daca oo € A" i daca f(z) = Y " a, - 7 "(x — 00) atunci existd o
a
vecindtate V' a lui +00 a.i. functia g A — R, g(t) = f(t) —ag — 71, este
integrabild pe [x,4+00),Vr € VN A si

o0

) f(t)—ao—ﬂ dtzzanﬂ'x*”(x%oo).
@ t

n
n=1

Demonstratie. In enuntul de mai sus R 5 (respectiv Ry, ) ) noteaza
clasa functiilor integrabile in sens generalizat pe (0, z] (respectiv pe [z, 00)),
adica a acelor functii pentru care exista lim, o f; f(t)dt € R (respectiv exista
limyoo [V f(t)dt € R).

1). Deoarece f(z) = > o an-2"(x — 0), f(x) = ap +arz + O(z?)(x — 0)
deci 36 > 0,dM > 0 ald. |f(z) —ap —a1x| < M - 2% Vz € [-§,0] N A\ {0}.
Deoarece f(f M - z%dz converge, f(x) — a9 — a1x € R, de unde f € R
si deci f € Rpq, Vo € [—0,0] N A.

Utilizand din nou ipoteza, VN € N*, 3g(x) = O(2N 1) (x — 0) si existd o
vecinatate V' a lui 0 a.i.

f(x)=ao+aw+ - +anz™ + g(x),Yo € VN A\ {0}.

De aici rezulta ca g € R ), Vo € V gi daca integram relatia de mai sus

’ _ oo N v [
/0 f(t)dt = apx + 5% +N+1:1: ~|—/0 g(t)dt.
Deoarece |g(x)| < MzV Vo e VN A\ {0},

v M
/ g(t)dt‘ < N+
0
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si deci [ g(t)dt = O(aN2)(z — 0). Rezulta ca, VN € N,

| s -

ceea ce arata ca

N
k+1 —l—O(INJrQ)(SL’ N 0)
k=0

/f Hdt =y 2" (= 0).

2). Presupunem acum ca +oo € A" g1 f(z) = Y apz " (z — 00); atunci
f(x) =ao+ % + O(z7?)(x = 00) si deci IM > 0,36 > 0 a.i.

‘f( —ao——‘<—V$€[5+oo)

Deoarece féoo %dm este convergenta rezulta ca f(x) — ag — € Ri5400) deci
f(t) —ag — % € m[x,Jroo),V!T € [5, —I—OO).

Acum, VN € N*,3g(z) = O(z= W) (z = o0) al. f(z) —ag— 4 =
=% 4.+ X+ g(2).

Rezulta ca g € R}, 1), V2 € [0, +00) si daca integram relatia de mai sus

o an 1 0
/x [f(t)—ao—— dt = x+”'+N—1.a:N_1+/w g(x)dx.
Deoarece g(z) = O(z™V 1) (z — o00), IM > 0, 36; > § a.l.

lg(x)] < M - e Nl e [01, +00),

de unde

o M
/ g(t )dt‘ < ~ ™V, deci

oo N
/z [f(t)—ao—%]dtzz T o F 1 O V) (2 — o), YN > 2,

ceea ce arata ca
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3.1.19 Teorema. Fie A un interval marginit sau nemarginit si f : A — R
o functie derivabila a.i. f' € Rq, Ve, d] C A.

1). Daca 0 € A, f'(z) = Y2 bpa™(x — 0) st daca exista
lim, o f(x) = ap € R atunci

NCLo-i—an "z —0).

2). Dacai oo € A', f'(xz) = >y bpa™"(z — 00) si dacd exista
lim, oo f(z) = ap € R atunci by = by =0 gi

) bn .
f(x)%ao—z le (x — 00).
n=1

Demonstratie. 1). Functiei f’ ii putem aplica punctul 1) al teoremei
precedente; rezulta ca exista V', o vecinatate a lui 0, a.i. f' € R, Vo €

VN A\{0} si
T o b
/ n . n+1
/O Pl =3 e o)

Dar [ f/(t)dt = f(x) — limy_ f(y) = f(x) — ao gi deci

oo bn
f(z) =~ ag +Zn—+1 " (2 — 0).
0

2). Aplicam lui f’ punctul 2) al teoremei precedente si rezulta ca exista
o vecinatate V a lui +oo ad. functia g : A — R, g(t) = f'(t) — by — 2, este

t
integrabila pe [z, 4+00),Vx € VN A si

/OO {f —bo—ﬁ] dt ~ f:bnr:rl-x_”(x%oo).

n=1

Insi 1ntegrala [ F(#)dt =limy_,o f(t) — f(x) = ap — f(z) este convergentd
si, cum f g(t)dt converge de asemenea, trebuie ca by = by = 0. Rezulta ca

o0

bnl —
f(x)xao—z 2 (2 = o). .

n

n=1
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3.2 Metoda lui Laplace pentru studiul com-
portarii asimptotice a integralelor gene-
ralizate

Ne propunem sa studiem comportarea asimptotica a unor integrale de tipul

B
/ ft,x)dz (t — o0),

unde intervalul de integrare (o, §) poate fi marginit sau nemarginit.

Ideea generala va fi aceea de a restrange intervalul de integrare (o, #) la un
interval mic (e, 7n) pe care functia f are valori maxime si pe care comportarea
asimptotica, cand t — 0o, este aceeasi ca pe (a, ). Avantajul restrangerii la
un interval mic este ca, in asemenea situatie, putem aproxima functia f prin
functii mai simple a caror integrala admite o comportare asimptotica relativ
ugor de studiat.

Vom aminti intai unele proprietati ale functiei I' a lui Euler, functie
definita prin urmatoarea integrala generalizata:

+oo
[(a) = / e .
0+0
. v . . . v oo v [
Integrala gfnerahzata (sau improprie) mixta fo 4o este convergenta daca in-
. [ee] A v
tegralele fo 4o § f1 sunt, amandoua, convergente.
1 - _ _ _ 1 _ _
Deoarece 27! - e7h <ot e < a*hVr € (0,1], [, 2" e da are

. y 1 .
aceeagi naturd cu [, #* 'dz. Dar

1 1 : a
2% dz = lim ¢ da = limy o (i "t HL) ya #0, =
040 wlo J, lim,o (Inz|) ,a=0

_ % ,a > 0,
| +oo ,a<0.

a=l. e=%dz converge daca si numai daca a > 0.

Rezulta ca f01+0 x
Pentru a 2-a integrald observam ci 2% 1.e™® = O (6_%) (x — 0) si, deoarece

+oo _z v v v too _ _
J, 7 e 2dx este convergentd, rezultd ca [ x*"'- e "dx converge, Va € R.

Rezulta ca I' : (0, +00) — R.
Propozitia urmatoare aminteste cateva dintre proprietatile functiei I'.
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3.2.1 Propozitie.
1).T(a+1)=a-I'(a), Va>0.
2).T'(n+1)=n!, YneN.

3). T <%) - /:o e dx = /7.

— 1"
4).T (n + 1) = uﬁ, Vn € N, unde 2n—1)!! =1-3-5--- (2n—1).

2 2n
Demonstratie.
+oo +o00 too
1). T'(a+1) = / - e tdr = —/ g (") de = =" eT"| L+
0+0 0+0
+oo
+a- / 2 e dr = a - T(a).
040

2). T(1) = [ e*de =1=0.
In continuare utilizim relatia de la punctul 1):
re)=1-r1)=1,

I(3) =2-T(2),

L(n+1)=n-T(n).
Inmultind relatiile de mai sus obtinem rezultatul de la 2).

1 teo g
3). T (—) = / —— - e %dx; facem schimbarea de variabila z = y? si
2 0t0 VT

1 oo q ) +00 , +o0 )
Ob§inem I <§> = / —e Y 2ydy == 2/ e Y dy = / e Y dy = ﬁ
0 0 _

+0 Y 00
Ultima egalitate se poate demonstra in diverse moduri; propunem aici o

demonstratie bazata pe formula de schimbare de variabila la integrala dubla.

o0 9 400 9 o0 9
Fie [ = / e " dx; atunci I? = / e " dx / e Vdy =

o0 —00 o0

= / / e_(l’2+y2)dxdy. In integrala dubli trecem la coordonate polare:
RQ

LTSy, ,u > 0,v € [0,27]. Jacobianul acestei transformari este
y = usinv
D(xy) _ | =, | _
D(u,v) | Yu Yo
si deci

D 400 21
I?2 = // e v . (x’y)dudv = / e udu - / dv =
[0,4-00) x[0,27] D(u,v) 0 0
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1
== —— e
2

400
o )~27r:7r,

de unde I = /7.
1 on+ 1 on—1 on—1
T (nto)=rT(2) 2 (22 _
2 2 2 2
_ -1 203 L (20-3) <_@n—D@n—@-~&1I11 B
2 2 2 - on 2)
(2n — 1!

i .

2n
Proprietatile functiei I prezentate in propozitia anterioara permit calcu-
larea valorilor unor integrale ce vor interveni frecvent in cele urmeaza.

3.2.2 Propozitie.
+0o0

1). e My = g . % . t’22+1, Vn € N,Vt > 0, unde

0
2n DM =1-3-5---(2n—1) gi (1)1 = 1.
+o0 |
2). / et 2l gy — % 1 ¥n e NVt > 0.
0

+o0o
3). / e . gy =n!-t7" Vn €N,V > 0.
0

+oo
Demonstratie. 1). In integrala / e~ . 2?"dx facem schimbarea de
0

variabild tz? = y si obtinem

/+00 —tx? Qnd /-‘rOO YT 1 1 d 1 - 2n2+1 r ( n 1)
6 -a’: I = 6 -y .  —_— y —_ — . n —_— e
0 0 \/E 2\/@ 2 2
— 1\
1 t_2n2+1 ] (QTL 1).. ﬁ

2 N on N

2)_/ emz.xzwdx:/ vyt e L
0 0

1

n!
=_.¢ T 1)=— -t
5 (n+1) 5

+oo
3). Cu schimbarea de variabila x = y? obtinem / e gdy =
0

+oo
_ 2/ 6—ty2 . y2n+1dy — n!t—n—l.
0

Vom prezenta un exemplu prin care se va ilustra metoda lui Laplace.
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3.2.3 Exemplu. Sa se studieze comportarea asimptotica cand t — 400 a
functiei definite prin integrala:

f(t) = /_+<>o e In (14 z + 2?)da.

[e.o]

Sa observam intai ca, Vt € (—1,1),

L 1t B (=)
111 + +- (=1 +

Daca integram relatia precedenta pe [0, x] obtinem

e e

1) In(1 A S e L - Vo e (—1,1).
Folosim formula (1) pentru dezvoltarea lui In(1+2z+x?); pentru a o putea
aplica trebuie ca x + 2% € (—1,1), ceea ce este echivalent cu

T € (_1_\/5,_1+\/5). Deoarece {—1,1} C <_1_\/§7_1+\/5>7

2 2 2’2 2 2
obtinem
2 2 1 212 (="t 2\n
(2) m(l+z+2z°)=(x+= )—§(x+x Y4+ ——(x4a)"
sau, grupand termenii asemenea,
1 2 1 1 2
(3) In(l+z+2*)=o+ 2 -2+ ~o* + =2° — a8+ ...

2 3 4 3 6

1 ., 1., 2, 11
L gl D yp e | =2 2
AT e — 3 T v

Vom considera sirul (a,,),>1 definit prin

- — - 2 n>1
G3n—2—Sn_27G3n—1—3n_1,G3n— 30 nz
si atunci (3) se rescrie
(4) 1n(1+x+x2):§:a "V e L1
n ) 2’2 *

n=1
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Vom defini acum, pentru orice N € N, functia Ry : R — R, prin
Ry(z) = In(14z+22) =3 >¥ " a,2" Vo € R. Aplicim functiei Ry teorema

lui Lagrange pe intervalul [0, z]; fie ¢ € (0,z) a.i. Ry(z) — Rn(0) = Riy(c)-x
sau

(5) Ry(x) = Ry(c) - =.
Dar Ry (x) = x;ﬁ}rl —1—z+222 -3 —2* +22°+- - — (2N — 1)agy _12°V 2.
Aducand la acelasi numitor si reducand termenii asemenea obtinem:
1
Rﬁv(l’) = [(2N - 2)CLQN_QZE2N_1 + (2N — 1)a2N_1x2N+

22441
+ (2N — 1)CLQN_11'2N_1} .

Rezultd cd |Riy(z)| < 4]z|*N~1 si atunci, din (5),

(6) |Ry ()] < 4|z,
Atunci
00 oo [2N-1
f(t) = / o te? In(1 + 2 + 2?)dx = / [Z a,z" + Ry(7) et dp =
e | n=1
IN-1

= Z an/ e_t“'ja:”dx%—/ ¢ " Ry (z)dz.
n=1 —o0 —0o0

Evaluam ultimul termen din suma de mai sus folosind propozitia 3.2.2:
oo oo [e.e]
’/ e~ Ry (z)dz| < 4/ e N dy = 8/ et N dy =
—o0 —0o0 0

2N — DIt ona vl
:4ﬁ(2—N>-t 2 :O<t <N+2>>.

Observam ca ffooo e~ gndy = 0, pentru orice n impar si astfel, utilizand din
nou propozitia 3.2.2,

= (2n - 1)” 1 Nl
1) = > VATt 40 (F0+9) N eN.
n=1
Punctul (ii) al teoremei 3.1.11 ne arata ca
=~ ~(2n-=DN
ft) = Z ﬁ%a%t M+2) (t — o0).
n=1

Vom prezenta, in cele ce urmeaza, comportarea asimptotica a catorva
tipuri de integrale generalizate.
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Integrale de tipul fj;o ") dy

3.2.4 Teorema. Fie h: R — R o functie cu proprietatile:
1). h este continud pe R,
2). h(x) < h(0) =0,V € R\ {0},
3). 3b,c >0 a.i. h(z) < —=b,VreR cu |z| > ¢,
4). 3n"(0) <0,
5). fj;o "M@ dx este convergentad.
Atunci

oo 27
h(z
/_Oo @ dg ~ 0] (t — o0).

Demonstratie. Din conditia 2), h admite un maxim absolut in
origine. Conditia 4) ne asigura ca h este derivabila pe o vecinatate a originii;
atunci, din teorema lui Fermat, h'(0) = 0.

Definim functia ¢ : R — R prin ¢(z) = h(z) — 32 - B”(0),Vz € R.

Se observa ca ¢(0) = ¢'(0) = ¢”(0) = 0 de unde

/ _ A O /
x—0 €T x—0 x
Fie ¢ > 0 al. 2¢ < —h"(0); atunci exista 06 > 0 a.l. ¢ sa fie derivabila pe
(1) |/ (z)| <e-|z],Vr €R cu |z] <.

Putem alege § < ¢si atunci, cum h este continua pe compactul C' = [—¢, —0]U
[0, c], exista xy € C ad. h(z) < h(zg),Vx € C. Din conditia 2), h(zg) < 0 si
atunci, daca notam cu M = min{b, —h(zo} > 0, rezulta din 3)

(2) h(z) < —M,¥Yx € R cu |z]| > 4.

Fie x € [—0,0]; aplicam functiei ¢ teorema lui Lagrange pe intervalul [0, z].
Exista deci un punct ¢ intre 0 i z a.i. p(z) — ¢(0) = ¢'(c) - z, de unde,
folosind (1),

(3) lo(x)] < e 2% Vo € [-46,4].

Din (3) obtinem

(4) % c22 - [1(0) — 2€] < h(z) < = - 22 - [1"(0) + 2],V € [6, 4.

1
2



3.2. METODA LUI LAPLACE 97

Inmultim inegalittile (4) cu t > 0, exponentiem, integram pe intervalul
[—0, d] i obtinem:

0 é é
(5) / e%th[h"(O)72e] dr < / 6th(:p)d$ < / e%th[h”(O)JrZs] dr .
I I

Folosind propozitia 3.2.2 si inegalitatea 2e < —h”(0) rezulta:

(6) L < / " ed 024l gy — 9 / T 024 gy
o 0

1 2m
Utilizand (2), (5) si (6) obtinem

+00 é
/ eth(x)dx:/ et=h(@) x)dx—i—/ @) dy <
—00 (—00,—6]U[8,+00) -6
< e (=DM / M@ dy + I <
(—00,—0]U[d,+00)

< e tM . M. /+OO "M@ dg + 2m
= N 400y + 24

Deoarece fj;o e"®dx converge, notam K = eM fj;o e"@dr € R si, din
relatia de mai sus, obtinem

oo 21
7 @ dy < K- e™tM Vi > 0.
(7) /_ e r < e "4 ) 1 2 >

o0

Impértind relatia (7) cu #75(0) si trecand la limita superioara dupa

t — +00 obtinem

(8) lim sup ———— Jooe M h//( ) ,Ve € (O,L/(O)) :

t—+00 2 h” )+e 2
\/ S0
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Din (8), daca ¢ — 0, obtinem

' _+°O eth(m) dr
(9) lim sup =———— < 1.
t—+o00 _2m
~th(0)

Pe de alta parte, folosind iarasi relatiile (5) si propozitia 3.2.2,

+o0 g
/ M@ dy > / M@y > I, =
oo )
—00 (—00,—8]U[d,00)

_ 2 _/ o3 (t=D22[h"(0)=2¢] | 322[h"(0)=2¢] g,
—t[h"(0) = 2] J(_oo—s)uis,00)

Observam cd 3z%[h"(0) — 2¢] < %[h”(()) — 2] = —-M(e) < 0,V € R cu

|z| > ¢ si atunci, din inegalitatea precedenta obtinem

oo 27T 52 " oo
th(@) fpr =S 2e=h"(0)](t-1) —522[2e=h"(0)] 1, —
/_oo o \/ —t[h(0) —2e] /_oo ‘ !

_ 2m L otME) M), | 2T
Z1h(0) — 24] 2 — 1"(0)

Notam K (g) = M@ .

5o h,,( ) € R si obtinem

(10) /+°0 @ dy > 2n K(g) - e tME)
J— . e .
o —t[h"(0) — 2¢]

Impértim relatia (10) cu , /% si trecem la limita inferioara dupa
t — +oc:

+oo eth(z

(11) lim inf = —— Jow h” h”(O)) .

t——+o00 2t h”
th”(O)
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In (11) trecem la limiti pentru ¢ — 0 si obtinem

f+0° eth(m)dx

(12) liminf 22— > 1.
t—+o00 21
Zth0)
Din (9) si (12) rezulta ca exista
f+°° 6th(:17) dr
R .
t——+o0 2T
—th""(0)

3.2.5 Corolar. Fie h : R — R o functie care are proprietatile 1), 4) si 5)
din teorema precedenta si

2a). h(z) < h(0),Vxz € R\ {0},

3a). 3b,c > 0 a.7. h(x) — h(0) < —b, daca |x| > c.

Atunci

e th(z) t-h(0) 2m
e dx ~e i 0) (t = +00).

o0

Demonstratie. Functia h; : R — R hy(z) = h(x) — h(0),Vz € R,
verifica conditiile teoremei precedente.

3.2.6 Observatie. Putem remarca schimbarea de comportament a inte-
gralei in functie de valoarea pe care o ia functia h in origine. Astfel

h(0) >0 = fjoooo th(=)dx — 400 cu viteza lui e©);

e
h(0) =0 = fj;o M@ dgy — 0 cu viteza lui \/lg;
h(0) <0 = fj:oo "M@ dr — 0 cu viteza lui et"(©®

Integrale de tipul ["™ e "2 g(z)dx

3.2.7 Teorema (Lema lui Watson). Fie g : [0,+00) — R o functie cu
proprietatile:

1). g este continud pe [0, +00).

2). Ir > 0,3(an)n CR a.i. glxz) =" a,2™, Vo € [0,r].

3). Ik >0,3c € R a.i. |g(z)| < k-e“ V€0, +00).

Atunci, VA > —1,

+00 +oo
/ e Tt g(x)dr ~ Z an DN+ n 4+ 1)t~ A (¢ o).
0

n=0
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Demonstratie.

Fie a € R al —\ < a < 1; atunci lim, o2 [e”"2*|g(2)|] = 0 < +oo deci
Jo” e arg(x)dx este absolut convergent in 0.

e atg(x)| < Ke™ 972 g deci

lim 2% [e72*|g(z)] < lim KeT"972M2 =0, daci t > c.

Rezulti ca [~ e *xg(x)dx este absolut convergentd la oo cand ¢ > c.
Deci fooo e~@xrg(z)dx este absolut convergenta cand t este intr-o vecina-
tate a lui +o00.

/ emx)‘g(x)dx:/ emx’\g(a:)dx—l—/ e ot g(x)de .
0 0 r

n I
Pentru ¢t > ¢+ 1 avem
(1) |]2| < K/ 6(—t+c):vx>\dx _ K/ e(—t—&-c—i—l)ace—acx)\dx <

oo
< Ke(—t+c+1)7‘/ e—a:l)\dl, _ Kle—tr.

T

Pentru orice N € N definim 7y(z) = g(z) — 3.0, ana™

n—

Sa observam ca ry(x) = Y00 v ant” = 2N (ang Fange +oo0) =
oVt g (x). Functia g; este continud pe [0, 7] si deci exista L > 0 a.i.
(2) lrn(z)| < L- 2Nt Ve € [0, 7).
T N T T
(3) L= / e "t g(x)dr = Z Ay, - / e M dy + / e ey (x)d.
0 n=0 0 0

Din (2) si (3) rezulta

(4)

/ ety (x)da
0

T
SL'/ et AENHL g0
0
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Sa evaluam integralele [, (t) = for e " x*dr; facem intai schimbarea de vari-
abila tx = y i obtinem

tr o0 [e8)
(5) ]a(t) — / G_yt (a+1) ady —(a+1) / e—yyady _/ e—yyady —
0 0 t

T

N————
J(t)

=t @D . T(a+1) =t @D J(1).
In integrala .J(¢) facem schimbarea de variabild y = tr(1 + u) si obtinem
J(t) = / e e (tr) T (1 + u)*du.
0
Deoarece 1 4+ u < e",Vu € R obtinem

> 1
J(t) S e—tr(tr)a—&-l/ 6(—tr+a)udu — e—tr(tr>a+1 ~
0

tr — «

~ e (tr)Y (t — +o0)

si deci
(6) t~e gty =0 (e™) (t — +o0).

Din relatiile (4) si (5) obtinem

/ e Tty (x)de
0

— L . F()\ + N + 2) . t—()\+N+2) 4 t—(>\+N+2) . J(t)
Deoarece o (™) = O (t~**V*+2)) obtinem din (6)

< L-Dynga(t) =

(7) /GSG_WIEATN(ZL‘)d:L‘ =0 (t_(’\+N+2)) )

Din (3), (5), (6) si (7) rezulta

N
Z%L\Jm —|—O = (>\+N+2) Zanr A+ n+ ) ()\+n+1)+

n=0
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+o (e—tr) +0 (t—(A+N+2)>

sau
N

(8) I = Z a (A +n+ DM+ 4L O (t—(A+N+2))
n=0

si deci, VN € N,

/ e "atg(x)de =1+ 0 (e7") =
0

N
_ Z a, T\ + 1+ 1)t7(A+n+1) +0 (tf()\+N+2)) ’

n=0

ceea ce este echivalent cu

/ e Tt g(x)dr ~ Z an TN +n + 1)t M) (¢ o0). .
0

n=0

3.2.8 Observatie. Rezultatul din teorema precedenta ramane valabil daca
se inlocuieste semidreapta [0, +00) cu intervalul [0,7) cu T' € R,.

3.2.9 Exemple. 1). Sa determine dezvoltarea asimptotica pentru ¢t — 400

a functiei f(t) = 0+°O e " In(l + z + 2?)dz.

In exemplul 3.2.3 am obtinut urmatoarea dezvoltare:
In(1+xz+2°%) = i anz",Vx € [0 1) unde
ot ) ) 2 )

A3n—2 = T1_27a’3n71 = ﬁ7a’3n = _%7vn € N*
Rezultd cd functia g : [0, +00) — R, g(z) = In(1 + = + 2?),Vx € [0, +0)
este continua si dezvoltabila in serie de puteri pe o vecinatate a originii;

conditia 3) din lema lui Watson este de asemenea indeplinita si deci

/ e " In(1+z + 2°)dz ~ Z apyT(n+ 1)t~ (t = 00) sau
0

n=1

o0 i .l
/ e " In(1+ z + 2°)dz ~ Z n 10 (t — o).
0

n=1
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2). In exemplul 3.2.3 am ariitat ci

teo ta2 2 > (2n — 1)” 1
/ e In(l+ a4 a%)de = Z ﬁQ—nagnt’(“?) (t — o0)
- n=1
unde (a,), este sirul coeficientilor dezvoltarii in serie a functiei g : [—%, %] —

R, g(x) = In(1 + = + x?). Vom regisi acest rezultat ca o aplicatie a lemei lui
Watson.
Intai vom transforma integrala

+oo 0
/ e In(1 4z + 2?)de = / e In (1 + 2 + 2?)da+

+oo
+/ e (14 &+ 2?)de =
0
+0o0 )
:/ e [In(l-—z+2*)+In(l+z+2°)]de=
0

+o00 )
= / e ™ In(1+ 2* + 2")dz.
0
Daca in ultima integrald facem schimbarea de variabila x — /2 obtinem

1 o0
f(t) = 5 / ety In(1 + 2 + 2?)dz.
0

Acestei ultime integrale 1i putem aplica lema lui Watson si obtinem

1 — 1
f(t) = 5 Z a,I’ <n + 5) L (nta) (t — o0)
n=1
sau

2n =D a, .1
n=1

Se poate ugor arata ca sirul (a,), verifica relatia de recurenta a,, = 2as,,Vn €
N* si regasim astfel rezultatul anuntat.

O alta aplicatie a lemei lui Watson o prezentam in sctiunea urmatoare.
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Integrale de tipul [ aﬂ e~ h(x)dx

3.2.10 Teorema. Fic o, € R ai. a <0< B sifieh: (a,8) =R o
functie continua cu proprietatile:

1). ff e~ h(x)dx este convergentd, oricare ar fit > 0.

2). Ezistar > 0 st existd un sir (an), C R a.i. h(zx) =Y 7 a,2", Vo € R
cu |z| <.

3). Erxista K,c> 0 a.i. |h(z)| < Ke* Vx € (a, ).

Atunct

2 1
—tx ~ j : —(n+ l)
/c; (a:) ) n=0 (n 2) ( )

Demonstratie. Observam ca ‘e_thh(x)‘ < Ke "+ i i inte-

grala [ f e~ e dr este convergents; rezultd ca integrala [ f e~ h(z)dx este
absolut convergenta.
Efectuam in integrald schimbarea de variabild x = —,/y pe intervalul

[, 0] si x = /y pe [0, 3] si obtinem

B 0 B
/et’”Qh(x)dx:/ ethh(x)dx—l—/ e~ h(x)dx =

0

2

« 1 52
/ e Wy~ h(—/y)dy + 5/ e Wy 3 h(\/y)dy =
0 0

N | —

2

5 | e Ve + vy

2 62

@ 1 1 1
[, ey [ et ey

N | =

+

2 r2

Observam ca

1
5/2 ey~ 3h(—\/y)dy| <
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In mod aseménitor obtinem si inegalitatea

S K2 X e—t’l‘z

|
5/ e Yy 2h(\/y)dy

2

si deci putem utiliza lema lui Watson si observatia 3.2.8 pentru a obtine

1
—tx2 ~ : : _(_l+n+])
h d ~ jgnr - ]_ ° t 2 1’; > 5

sau

/ e h(x deZagn ( ) A (1 00), .

3.3 Formula lui Stirling

In acest scurt paragraf vom utiliza rezultatele din paragraful precedent pentru

a obtine diverse forme ale formulei lui Stirling.

Fie I': (=1, +00) — R functia definita prin ['(¢ +1) = [;* e "a'dz, Vt > —1.
Efectuand schimbarea de variabila z =t + y, ob‘gmem

[e.e] o0 ¢
F(t+1)=6_t/ e‘y-(t+y)tdy=e‘t-tt/ e—y-<1+g) dy

» , t

care dupa o noua schimbare de variabila (y = tx) devine

oo

Lt+1)=e" ttH/ e " . (1 + z)'dx sau
-1

oo

F(t + 1) _ 6—t . tt-l—l/ et[—x-i-ln(l-&-oc)]dx'
-1

Daca notam cu h(zr) = —x + In(1 + z), functia h : (—1,400) — R este
continua si h(z) < h(0) =0,Vz € (—1,400) \ {0}.

Aplicam teorema 3.2.4; conditiile 1) §i 2) sunt verificate. Deoarece
lim, , 1 h(z) = —c0 = limJHOO h( ), este verificata gi conditia 3).

R'(0) = —1 < 0 iar [ e"dx = e-T(2) este convergentd. Atunci, din
teorema citata, obtinem

o 2
/ @ gy ~ \/TW (t — o0) si deci
—1
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e

(4 1) ~ V27 - (f)t (t = o0).

Aceasta este o prima forma a formulei lui Stirling. Daca, in particular con-
sideram girul (¢, )nen definit prin ¢, = n,Vn € N, obtinem

n! ~V2mn (§> (n — +00).
e

Putem incerca sa rafinam formula lui Stirling in felul urmator.
+oo

In integrala / ¢™@) dx facem schimbarea de variabild
-1

(%) y? = —2h(z) = 2z — 2In(1 + z).

Intr-o vecinitate a originii putem explicita x ca functie analitica de y, deci
putem obtine functia x : [—r, 7] — R sub forma:

20)  2"(0)

./y_|_ 2' .y2+...

sau .
N n _ 2™(0)
x(y)—Zan-y , unde an—T,‘v’neN

n=0

Sa determinam sirul (a,),; derivam relatia (*) in raport cu y si obtinem

() =(+a)- 7
Py =) TS

32 2 2_32
x”’(y) :(1—|—£L‘)-g- y° + 2xy .1"

x x4
2 2
. . y - ?y) -y 2 .
0) =0 ] 7 —1iarl ZL 7 —Z obt
z(0) si cum lim,_,g e iar lim, o ) 3 obtinem

2/(0) = 1,2"(0) = 2,2”(0) = . Atunci

_ 1 2 1 3
x(y)—y+3 vyt
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de unde
W) =142 yto .
r\Yy)= 3 Yy 12 y

Atunci exista ¢ > 0 a.l.

D(t+1)=e" ¢ V e ./ (y)dy + O (ect)} (t = 00) =

T

/er—m?( +£ u+1 u® + - )dy+0(e_0t)] (t — o0).

—tyt+1
=e 1

3 6
V2

Utilizind teorema 3.2.10 obtinem atunci

D(t+ )Nettt“f[ <> t+é.r(§>-t3+m](t—>oo)

sau

D(t+1)~ 27rt<£>t {1+1—12 4 }(t—>oo)
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Capitolul 4

Algoritmi de integrare utilizati
in tehnica de calcul

Utilizarea diverselor softuri pentru calculatoare nu presupune cunostinte de
specialitate asupra principiilor teoretice pe care se bazeaza acestea ci vizeaza
doar insugirea unor deprinderi de a utiliza comenzi care fac programul sa
lucreze. Este evident insa ca pentru imbunatatirea acestor softuri gi pentru
crearea altora noi trebuie imbinate calitatile informaticianului si cunostintele
specialistului. Consider interesant sa exemplific aceasta printr-o problema
punctuala a carei tratare va face obiectul prezentului capitol; problema este:
cum procedeaza un program ca “Mathematica”, “Mathlab” sau “Maple” in
fata comenzii de a calcula primitiva unei functii 7 Aparatul matematic care
sta la baza algoritmului folosit pentru executarea acestei comenzi include
pe langa metodele clasice de integrare (tabele de primitive imediate, inte-
grare prin parti, substitutii, descompuneri in fractii simple s.a.) si aplicarea
unui algoritm a lui Risch, algoritm care are la baza principiul matematic
al lui Laplace-Liouville. Acest algoritm asociat cu utilizarea unor functii
suplimentare are drept rezultat calculul primitivelor, pentru functiile ce ad-
mit primitive exprimabile prin functii elementare sau raspunsul ca astfel de
primitive nu exista.

Pe scurt principiul lui Laplace-Liouville afirma ca, daca primitiva unei

functii f : D C C — C se poate exprima prin functii elementare (logaritmi si
n

exponentiale) atunci ea este de forma Z a; In(p;i(2)) + po(2), unde, pentru
i=1
orice i = 1,--- ,m, p; sunt functii rationale in f(z) si z iar a; sunt constante

109
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numerice. Pentru a demonstra acest rezultat a fost nevoie sa se introduca
notiunea de corp Liouville si sa se prezinte rezultate relative la extensiile unui
corp Liouville prin elemente transcendente ale sale.

In finalul capitolului se dau aplicatii ale acestui principiu la gasirea de
conditii In care expresii de forma F(w(z), z) au primitive exprimabile prin
functii elementare in w i z, unde w(z) = [ p(z)dz. Aceastd problema este
tratata complet in cazurile particulare F(w(z),z) = Ap(z) - w(z) + A1(z2)
cu Agp si Ay functii rationale precum si in cazul cand F' este polinom in w.
Conditiile de integrabilitate obtinute sunt exprimabile intr-o forma algorit-
mica ce permite scrierea unor programe care sa duca efectiv la exprimarea
primitivelor.

4.1 Extinderi de corpuri

In acest paragraf prin corp vom intelege un corp comutativ.

4.1.1 Definitie. Fie k£ un subcorp al corpului K; in acest caz K se mai
numeste o extensie a corpului k.

K se numeste o extensie finita a lui k£ daca exista z1,--- ,x, € K asa
fel incat, oricare ar fi € K, = se scrie in mod unic x = a1x1 + -+ + a2,
cuag, - ,a, € k. Multimea {x, - ,z,} se numesgte baza a extensiei K a
corpului k.

4.1.2 Definitie. Fie K o extensie a corpului k; un element 6 € K se
numeste algebric peste k daca exista un polinom fy € k(X) asa fel incat
fo(8) =0.

Daca 6 € K nu este algebric peste k atunci el se numeste transcendent
peste k.

O extensie K a unui corp k se numeste extensie algebrica daca orice
element al lui K este algebric peste k.

4.1.3 Teorema. Fie k un corp si fie 0 un element algebric peste k; atunci
kO)={f(0): f e k(X)} este o extensie algebrica a lui k.

k(0) este cea mai mica extensie a lui k ce contine 6.

Demonstratie. Deoarece k(X) contine polinoamele constante precum
si polinomul identic, & C k(0) si 6 € k(0).
k(0) este inel comutativ fata de operatiile obignuite de adunare gi inmultire.
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Sa aratam ca elementele nenule ale lui k£(0) admit invers.

Fie fy € k(X) un polinom unitar nenul si ireductibil cu coeficienti din &
astfel incat fy(f) = 0 si fie n € k(0),n # 0; atunci exista f € k(X) aga fel
incat n = f(6). Aplicand teorema impartirii cu rest, exista ¢,r € k(X) asa
fel incat f = fo-q+ r si grad(r) < grad(fy) = n. Atunci

n=f0) = fo(0)-q(0) +r(0) =r(0) # 0.

Deoarece fj este ireductibil, fy si ¢ sunt prime intre ele si deci exista u,v €
k(X) asa fel incat fo-u+r-v=1; rezulta ca r(0) -v(f#) =1 saun-v(f) =1
si deci 7 este inversabil.

Deci k() este o extensie a lui k ce contine 6. Pe de alta parte este evident
ca orice alta extensie a lui k ce contine 6 va contine si pe k(6), de unde rezulta
ca k() este cea mai mica extensie a lui k care contine 6.

Sa aratam ca k(0) este o extensie algebrica.

Asa cum am observat din cele de mai sus, Vn € k(6),3r € k(X) cu
grad(r) < n astfel incat n = r(#). Deci

n =ay-14+aj-0+a}-6*+---+al - 60"
n” =ai-1+a}-0+a3-0*+---+a2_, - 0"!

(%) B :

77nJrl :CLBL—H-1+a?+1-9+ag+1-92—{—---—|— n+1 .gn—1

unde a! € k,Vi € {0,...,n —1},Vj € {1,....,n + 1}.

In (%) substituim {1,6,62, ...,6""'} din primele n relatii in ultima si de-
terminam un polinom g € k(X) astfel incat g(n) = 0 ceea ce va arata ca 7
este algebric. Practic procedam in felul urmator:

Pentru j = 1 exista i1 € {0,...,n — 1} astfel incat a; # 0 (presupunem
ca n # 0). Putem astfel determina din prima relatie # in functie de 7 si
de 0',i € {0,....n — 1} \ {i1}. Inlocuim pe 0" astfel determinat in celelalte
relatii din (*) si obtinem

= =0, 00
3 _ 3 pi
(**) n Zz;ﬁzl bz 0 ’

nn+1 = Zz;ﬁzl b;lJrl 62

unde ¢; € ksib! € k,Vi € {0,...,n—1}\ {i1},Vj € {2,....,n+ 1}.
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Daca in prima relatie din (%) toti coeficientii b? sunt nuli atunci g(n) =
n? —c; -n = 0 si deci 1 este algebric peste k.

Daca exista iy € {0,...,n—1}\ {41} asa fel incat b7, # 0 atunci, din prima
relatie din (x*), exprimam pe 62 in functie de 6°,7 € {0,...,n — 1} \ {i1, 42}
si de %, n; inlocuindu-1 in celelalte relatii din (%), obtinem

773 _d1'772 —dy-m = 2#1‘172‘2 C? A

nn+1 _ Z Cn-i-l . H¢

i1 ig Ci

(5 * *)

unde dy,dy € ksi ¢l € k,Vi € {0,...,n — 1} \ {i1,i2},Vj € {3,....,n + 1},
s.a.m.d.
Dupa cel mult n astfel de inlocuiri obtinem o relatie de tipul

gm) ="t —er " —ex - = — €1 =0,

unde e; € k,Vi € {1,...,n+ 1}, ceea ce arata ca n este algebric peste k.

4.1.4 Observatie. k(f) este o extensie finita a lui k si admite drept baza
multimea {1,0,...,6" '}

4.1.5 Teorema. Fie k un corp si fie 0 un element transcendent peste k; cea
mai mica extensie a lui k ce contine pe 0 este

k(0) = {% fg€ k(X)}.

Demonstratie. Remarcam ca, pentru orice g € k(X), g(#) # 0 si deci k(0)
este corect construit (din definitia elementelor transcendente, se subintelege
existenta unei extensii K a lui k ce contine 0; astfel este bine definita operatia

f(6)
—= c K).
9(0) ) A
Este evident ca k() este corp si ca 6 € k(f),k C k(f). In plus orice

extensie a lui k ce contine § va contine in mod evident si pe k(6). .

4.1.6 Exemple.

1). Fie Q corpul numerelor rationale; V2 este un element algebric peste
Q. Rezulta ca Q(v2) = {f(v2) : f € Q(X)}. Putem usor observa ca,
VieQ(X), f(V2) =a+b-+2, unde a,b € Q si deci

Q(W2) ={a+b-vV2:a,beQ}.
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2). m este transcendent peste Q si deci

o - {18 rgea}.

In cele ce urmeaza ne vom ocupa de o clasa speciala de corpuri - corpurile
Liouville.

Corpuri Liouville

Vom aminti cateva definitii si rezultate privitoare la functiile complexe de o
variabila complexa.

Fie C multimea numerelor complexe cu structura sa uzuala de corp nor-
mat complet gi fie D C C o multime deschisa. O functie f : D — C este

Z)— JZ
derivabila in 2y € D daca exista lim M
Z—20 z — ZO

noteaza cu f’(z) si se numeste derivata functiei f in z.

Fie zo = zo +iyo §1 f(2) = u(z,y) + iv(z,y),Vz = v + iy € D; atunci f
este derivabila in zy daca si numai daca functiile reale de doua variabile u si
v sunt diferentiabile in (xq,yo) si sunt verificate conditiile Cauchy-Riemann:

€ C; aceasta limita se

0 0
a—z(xo,yo) = a—Z(xoayo)
O o) = —22 (0, 30)
8y Lo, Yo) = o Lo, Yo
In acest caz ['(20) = @(950&0) +1 @(l’oayo) = @(370,3/0) —1 %(l’oayo)-
O O dy Ay

Functia f este olomorfa pe D daca este derivabila in toate punctele lui D.
Un punct z; € D este un punct singular izolat pentru f (singularitate

aparenta, pol sau singularitate esentiala) daca exista un deschis D,, C D

care contine zy asa fel incat functia f sa fie olomorfa pe multimea deschisa

Dz \ {z0}-

Putem acum formula definitia corpurilor Liouville.

4.1.7 Definitie. Fie D C C o multime deschisa si fie R(D) o multime
de functii f : D\ I; — C care admit, fiecare in parte, o multime cel mult
numarabila de singularitati izolate Ir; R(D) se numeste corp Liouville de
functii pe D daca sunt indeplinite conditiile:
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a). (R(D),+, ) este corp fata de operatiile uzuale de adunare gi inmultire
si C C R(D) (R(D) contine functiile constante).

b). Vf € R(D), f este uniforma si olomorfa pe D \ I;.

c). Vf € R(D), f' € R(D).

Cand multimea D este subinteleasa vom nota R in loc de R(D).

4.1.8 Exemplu. Cel mai simplu exemplu de corp Liouville il constituie
corpul functiilor complexe rationale:

R:{gi; :P,QGC(X)}.

Este evident ca R este un corp ce contine functiile constante; VP, Q) € C(X)

P
(deci P si @ polinoame cu coeficienti complexi), — este o functie uniforma

si olomorfa pe C cu exceptia unui numar finit de poli. De asemenea

E/_P,Q_PQ,
() = en

Corpurile Liouville fiind corpuri algebrice admit extensii fata de elemente
algebrice sau transcendente; ne intereseaza in ce conditii astfel de extensii
sunt la randul lor corpuri Liouville.

Fie 6 : D\ Iy — C o functie uniforma si olomorfa pe D cu exceptia unei
multimi cel mult numarabile de singularitati izolate I i fie R(D) un corp
Liouville pe D; sa presupunem ca 6 este un element algebric peste R(D) ,
deci ca exista un polinom Py cu coeficienti din R(D) asa fel incat Py(0) = 0.
Teorema 4.1.3 ne asigura ca {P(f) : P € R(D)(X)} este cea mai mica
extensie algebrica a lui R(D) ce contine 0; aceasta extensie nu contine insa
in mod obligatoriu si pe €' si astfel nu este corp Liouville.

4.1.9 Teorema. Fie R un corp Liouville de functii pe deschisul D C C s
fie @ : D\ Iy — C o functie uniforma si olomorfa pe D cu exceptia unei
multimi cel mult numarabile de singularitate izolate Iy; vom nota cu
P(0)
R(6 :{—:RQERX,QQ 7&0}
=1 509 (X),Q(0)

Conditia necesara si suficientd pentru ca R(0) sa fie corp Liouville pe D este
ca 0 € R(0). In acest caz R(0) este cea mai mica extensie Liouville a lui R
care contine pe 0.
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Demonstratie. Este evident ca R(0) este corp fata de operatiile uzuale
de adunare si de inmultire gi ca R(6) este o extensie a lui R ce contine 6. De
asemenea se poate ugor observa ca orice functie f din R(f) este uniforma si
olomorfa pe D \ Iy, unde I este o multime de singularitati izolate ale lui f
cel mult numarabila. Rezulta ca R(f) va fi corp Liouville peste D daca si
numai daca, Vf € R(0), f' € R(0).

Daca R(f) este corp Liouville atunci in mod evident 6’ € R().

Reciproc, presupunem ca 0 € R(0) si fie f € R(0) o functie arbitrara.
Atunci exista doua polinoame P, @ € R(X) cu Q(6) # 0 asa fel incat

_M z AH acest caz
f(z)—Q(e(Z»,V e D\ ;. 1 t
fi) = PLOE)-QOG) — POE) -QOG) 4y,

Q*(0(2))

Cum 0" € R(0), exista P,Q1 € R(X) cu Q1(0) # 0 aga fel incat 0'(z) =
P(6(z)) :
———=.Vz € D\ Iy; atunci
Qi) PN
o [P)-Q0) = PO)- Q) P.0) _ Fu(0)
Q*(0) - Q1(9) Q2(0)

cu P27Q2 S R(X) §1 QQ(@) §é 0.

Rezulta ca f' € R(0) si deci R(0) este corp Liouville.

Este evident ca orice extensie Liouville a lui R ce contine 6 contine si

R(9).

4.1.10 Corolar. Fie R un corp Liouville de functii pe deschisul D C C i

fie @ : D\ Iy — C o functie uniforma gi olomorfa pe D cu exceptia unei

multimi cel mult numarabile de singularitati izolate Iy asa fel incat 6 este
element algebric peste R.
P(6

Atunci R(0) = {% :P,Q € R(X),Q(0) # O} este extensia Liouville

a lut R ce contine 6.

Demonstratie. Conform teoremei precedente R(f) este corp Liouville pe
D daca si numai daca ¢ € R(#). Deoarece 0 este algebric peste R, exista un
polinom de grad minim Py € R(X) aga fel incat F,(f) = 0; sa presupunem
ca Pp(X)=ag-X"+a;- X" 1+ +ay, cuag,..,a, € R. Deci

ap(2) - 0™(2) +a1(2) - 0" 1 (2) + - +an(2) = 0.
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Daca derivam aceasta identitate obtinem
[a6(2) - 6"(2) + a1(2) - "7 (2) + -+ (2)] +
+ [nag(z) - 0" (z) + (n— Dai(2) - 0" %(2) + -+ - + an_1(2)] - () = 0.
Polinoamele P(X) =ap- X" +a} - X" 1+ +a, 51 Q(X) =nag- X" ' +
(n—1a - X" 2+ -+ a,_; sunt din R(X) si grad(Q) < n. Rezultd ca

—P(6
Q(#) # 0. Atunci 0 = Q(é)) € R(0); deci R(0) este corp Liouville.
Daca 0 este transcendent peste R, R(f) nu este, in caz general, corp
Liouville. Totusi exista unele elemente transcendente remarcabile 6 pentru
care R(0) este corp Liouville. Inainte de a le prezenta vom reaminti definitiile
catorva dintre functiile complexe elementare.

4.1.11 Functia exponentiala. Aplicatia f : C — C data prin f(z) =
e” - (cosy+isiny),Vz = z+iy € C definegte o functie pe C pe care o numim
functia exponentiala si o notam cu f(z) = e*,z € C.

u(z,y) = e* - cosy
v(x,y) =€ -siny

Observam ci v si v sunt functii diferentiabile pe R? si ci verifica conditiile
Cauchy-Riemann in orice punct z = x + 1y € C. Rezulta ca f este olomorfa
pe Csica f'(z) =e* = f(z),Vz € C.

Reamintim urmatoarele doua formule utile in analiza complexa:

Partea reala u si partea imaginara v sunt definite prin {

e* = lim,,_, o0 (1 + E) ,Vz € C,
2 n n

z oz z
E=14+=+=+-+—=+---,Vzel
12! n!
Functia exponentiala are cateva proprietati ce se deduc imediat din definitie:
et = el .2 Yz 2, € C,
e* T2 = ¢e% V2 € C,

e =cosy+isiny,Vy € R,
e =1,e*#0,Vz € C.
Cu ajutorul acestei functii putem introduce alte doua functii olomorfe pe
C, functiile “sinus” i “cosinus”:

eiz _ e—iz 23 25 Z2n+1
sy e e T O ey
et? + et ) 22 N 24 N N ( 1)n z2n N
cosz=————=1— — — — R
2 21 " 4l (2n)!
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4.1.12 Functia logaritm. Functia multiforma Log : C* — 2° definita prin
Log(z) ={w e C:e" = z},Vz € C*, o numim functie logaritm.

Daca z = |z|(cos argz + i sin argz) este forma trigonometrica a numarului
z € C*, atunci |z| > 0 si

Log(z) = {In |z| + i(argz + 2kn) : k € Z}.
Pentru fiecare k € Z functia definita prin
Log,(z) = In|z| + i(argz + 2k7),Vz € C*,

se numeste ramura a functiei logaritm.

Ramurile acestei functii nu sunt functii uniforme pe C*; ele sunt uniforme
daca consideram restrictiile lor la D = C\ {z € C : Re(z) < 0,Im(z) = 0}.
Astfel, Vk € Z,

log, : D — C,log,(2) = In|z| + i(argz + 2km),

este ramura uniforma a functiei logaritm; aceasta este si olomorfa pe D si
1

(log,(2)) = =,Vz € D.
z

log, se numeste ramura principala a logaritmului si se noteaza cu log:
log: D — C,log(z) =In|z| + ¢ argz,Vz € D.

Functiile exponentiala si logaritm permit constructia altor functii com-
plexe multiforme: functia putere, functia radical, functiile trigonometrice
inverse.

In continuare vom prezenta doua exemple remarcabile de extensii Liou-
ville.

4.1.13 Exemple. Fie R un corp Liouville peste deschisul D C C si fie
u € R o functie ne-identic nula.

(i) Elementul 6 : D\ {2z : u(z) = 0} — C definit prin 0(z) = log(u(z)),
este, In general, transcendent peste R (presupunem ca restrangem convenabil
domeniul D pentru a uniformiza ramurile functiei logaritm).

u'(2)
(2)

Observam ca ¢'(z) = si deci

I~

aglog™(u) + -+ + ay,
bolog™(u) + -+ + by,

QIERQR(Q):{ :ai,bjER}.
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Conform teoremei 4.1.9, R(#) este corp Liouville; el se numeste extensia
logaritmica Liouville a lui R.

(ii) Elementul 6 : D — C, definit prin §(z) = e*(*), este element transcen-
dent peste R; deoarece 0'(z) = u/(2) - 0(z), rezulta ca 6 € R(0) si deci, din
teorema 4.1.9,

aoenu(z) _|_ e + aIn
boemu(z) 4+ bm

R(0) = { La;, by € R}

este corp Liouville; el se numegte extensia exponentiala Liouville a lui R.

4.1.14 Definitii.

(i) Daca R este un corp Liouville si 6 este un element algebric peste R,
R(#) se numeste extensie algebrica Liouville a lui R.

O extensie Liouville a lui R se numeste extensie de rang zero daca ea
se realizeaza dupa un numar finit de extensii algebrice Liouville ale lui R.

(ii) Daca R este un corp Liouville si 0 este un element transcendent peste
R asa fel incat R(0) este corp Liouville atunci R(f) se numeste extensie
transcendenta Liouville a lui R. Extensiile logaritmice si exponentiale
prezentate in 4.1.13 (i) si (ii) se numesc extensii elementare.

(iii) O extensie Liouville a lui R se numeste extensie Liouville de rang
n, (n > 1) daca se obtine dupa un numar de n extensii transcendente Liouville
peste R. Daca aceste extensii sunt elementare (deci sunt extensii logaritmice
si/sau exponentiale) atunci ele se numesc extensii elementare de rang n.
O extensie Liouville R; a lui R se numeste extensie Liouville elementara
daca exista n € N aga fel incat R; sa fie extensie elementara de rang n.

(iv) O functie ® este elementara in raport cu un corp Liouville R daca
® apartine unei extensii elementare a lui R.

4.2 Principiul Laplace-Liouville

Functiile exponentiala si logaritmica stau la baza constructiilor celorlalte
functii elementare cunoscute: functiile trigonometrice, functiile trigonometri-
ce inverse, functia putere, functia radical (caz particular al functiei putere).

Extensiile elementare, ca extensii Liouville efectuate prin functii expo-
nentiale si logaritmice, sunt deci suficiente pentru a acoperi extensiile unui
corp Liouville efectuate prin alte functii elementare.
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Fie R un corp Liouville peste D C C si fie ¢ € R; ne intrebam in ce
conditii o primitiva ® a functiei ¢ pe D apartine unei extensii Liouville
elementare a lui R. Raspunsul la aceasta intrebare il da principiul lui Laplace-
Liouville, principiu pe care il prezentam mai jos fara demonstratie.

4.2.1 Teorema (principiul lui Laplace-Liouville). Fie R un corp Liouville
peste D C C i fie ¢ € R; o primitiva a lui ¢, ® : D\ Ie — C apartine unei
extensit Liouville elementare de rang n € N daca si numai daca exista n+ 1
functii ug, uq, - ,u, € R si n constante aq,--- ,, € C asa fel incat

d(z) = Zaj log(u(2)) + uo(2),Vz € D\ Io.

Data o functie ¢ € R ne intereseaza daca primitiva sa ® apartine unei
extensii elmentare a lui R, adica daca exista n € N aga fel incat ® sa apartina
unei extensii elementare de rang n. Daca n = 0 atunci ® trebuie sa apartina
unei extensii obtinute printr-un numar finit de extensii algebrice si deci, dupa
teorema 4.1.3 si corolarul 4.1.10, ® trebuie sa fie algebrica peste R.

Vom prezenta o aplicatie imediata a principiului Laplace-Liouville.

4.2.2 Exemplu. Fie R corpul Liouville al functiilor rationale (vezi exem-
1
plul 4.1.8) si ¢ : C\ {xi} — C,¢(2) = i atunci ¢ € R.
z

Ne intrebam cum procedeaza un program conceput sa raspunda la in-
trebarea: ¢ admite primitive elementare peste R 7 (presupunem ca acest
program nu ar dispune de un tabel de primitive elementare ci ar utiliza doar
principiul Laplace-Liouville).

Fie deci ® o primitiva a lui ¢; daca presupunem ca ® este elementara
fata de R, atunci exista n € N aga fel incat ® sa apartina unei extensii
elementare de rang n a lui R. Conform principiului Laplace-Liouville exista
Ug, Ut, "+ , Uy € Rsiag, -, a, € C asa fel incat

O(2) = Z a; - log(u;(2)) + uo(2).

Daca presupunem ca n = 0 atunci & = ug € R ceea ce este absurd. Intr-

P
adevar, In acest caz ar exista P,Q) € C(X) asa fel incat ®(z) = Plz) si

()
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1 P2)-Q() = P(2) Q)
241 Q*(2)
deoarece ¢ nu admite poli multipli.
Presupunem n = 1 gi deci ®(2) = ay log(u1(2)) + uo(2z); deoarece ug, uy €

ceea ce este imposibil

atunci ®'(z) =

P
R, exista polinoamele Py, Qq, P1, Q1 € C(X) asa fel incat ug = Q_O siu; = Q_l
0 1
si deci
P1> Py
Ob=aq-log|—)+—.
v <Q1 Q
Derivand relatia precedenta obtinem
Lo (A2 90, KR
= - — .
2+1 Pi(z)  Qi(z) @5
P . — PO
Cum ¢ nu admite poli multipli u, = 0 Qo 5 h- Qo = 0 si deci ug este

0
o functie constantda ¢ € C. Remarcam de asemenea ca Py(z) = z + i si

1 1 1
Q1(z) = z — i si deci 1 =q - (z+i_z—i) deundealz—%. Deci

dz 1 zZ+1 1 zZ41
() /22—|—1 2i Og(z—i)+c 2i Og(z—i>+c
1 11—z 1 1 11—z
5 {og( )+ og<i+z>]+c 5; (7r2)+22, og(i+z)+c

1 (z—z) T
— - log + = +ec.

) itz2) 2
Rezultatul nu este surprinzator deoarece functia “arctangenta”, w, se obtine
1 €2iw _ 1
din rezolvarea ecuatiei z = tg w = — - ———; se obtine imediat
7 62“” + 1
¢ 1 | 1 — Z
w = arctgz = — - lo - )
& 21 & 1+ z

4.3 Cazuri particulare

In acest paragraf ne propunem sa analizam cateva clase de functii pentru care,
utilizand principiul Laplace-Liouville, sa decidem asupra conditiilor in care
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acestea admit primitive exprimabile prin functii elementare si sa calculam
aceste primitive.

Vom preciza conditiile in care lucram. Fie R un corp Liouville peste
D C Cyi fie p € R asa fel incat primitiva sa w (w' = p) este transcendenta
peste R.

Deoarece w' = p € R C R(w) rezulta din teorema 4.1.9 ca R(w) =

{P(w)

O(w) :PQ e R(X)} este corp Liouville peste D (R(w) este cea mai mica
w
extensie Liouville a lui R care contine transcendenta w).

In cele ce urmeaza vom prezenta conditiile in care integrale de tipul
| f(w, z)dz sunt elementare peste R(w) unde f : Cx D — C are proprietatea
cd f(w, z) = Ag(z) - w + A;(2) sau, mai general, f(w,z) = > _, CFA(2) -

n—k
w" ",

Integrarea expresiilor de forma Ayw + A;

4.3.1 Teorema.

Fie R un corp Liouville pe domeniul D C C si fie p € R asa fel incat
w(z) = [ p(2)dz defineste un element transcendent peste R. Fie Ay, Ay € R;
conditia necesard gi suficientd pentru ca /[Ao(z)w(z) + Ai(2)]dz sa de-

fineasca o functie elementara in raport cu R(w) este ca sd existec € C,a € R
st o functie A elementara in raport cu R asa fel incat:
{ Ao(z) = c-p(z) + d'(2),

Ai(z) = a(z) - p(z) + A'(2).

In acest caz

/ [Ao(2) - w(2) + ()] dz = & -w(2) + a(2) - w(z) + AG).

Integrala de mai sus defineste o functie din R(w) daca si numai daca A € R.

Demonstratie. Asa cum am precizat mai sus, cel mai mic corp Liouville

. . P(w) }
ce contine R si w este R(w) =< ——=: P,Q € R(X) ;.
fine 7' 0 ={ G+ PQ € R(X)
Necesitatea. Presupunem ca F(w, z) = [ [Ao(2)w(2) + A1(z)] dz definegte

o functie elementara in raport cu R(w); conform principiului Laplace-Liou-
ville, exista n € N, exista aq,--- ,a, € C si exista ug, ui, -+ ,u, € R(w) asa
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fel incat

F(w,z) = Z ay, - log(ug(w, 2)) 4+ ug(w, 2).

Derivand relatia de mai sus dupa variabila w obtinem:
i 1 aUk 8u0
U Uy, 8w

.. . o 3Uk; . “
Deoarece u; sunt functii rationale in w, Em sunt de asemenea rationale in
w
) . OF o
w si deci o € R(w). Pe de alta parte,
w

CPw(z),2) = Ao(2) () + A=) = I (w(z), 2) - w(2) + D (w(2), ) =

= (). 2) p2) + T (wi2), 2)

F
de unde rezulta ca 5 € R(w). Rezulta deci ca
z

oF OF
a—w, E S R(’LU)
Din relatia precedenta rezulta
(’9F oF

Deoarece w este transcendent peste R relatia (1) este o identitate in w (altfel
(1) ar conduce la o ecuatie polinomiala in w cu coeficienti din R ceea ce ar
nega transcendenta lui w). Deci

(2) Ap(2) - w(z) + A1(2) = %F(w(z), ).
Din (2) rezulta ca, oricare ar fi v € C,
3) A(w(z) +7] + 41(2) = = Fw(z) + 7, 2)

dz
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sau, integrand dupa z de la ¢g € C la z € C,
@) [ (A0l o) 7]+ A2} b = Flu(e) +7.2) = Flu(e) +3.0).
Notam —F(w(cp) + 7, o) = ¢(7y) si deci

(5) / {40(2) [10(2) + 7] + Ax(2)} dz = F(w(2) +7,2) + ().

Derivam relatia (5) dupa v de doua ori si obtinem pe rand

) [ Autadz = S wle) +.2) + ),
@ 0= 02 (w(z) +7.2) + ')

Daca in (7) facem v = 0 gi notam ¢ = —¢”(0) € C, obtinem

82

ow?

(8)

—(w,z) =c.

Din (8) rezulta ca exista a; : D — C aga fel incat

9) Z—Z(w,z) =c-w+a(z)

OF
i cum o € R(w) iar w este transcendent peste R, relatia (9) este o iden-
w

titate In w. Rezulta ca daca in (9) ii dam lui w o valoare constanta wy,
() oF
a1(z) = =—
! ow

Observam ca membrul intai din relatia (6) nu depinde de v si deci

(wo,2) —c-wy € R.

(') / Ao(2)dz = g—i(w,z) +¢(0).

€o

Inlocuim (9) in (6') si obtinem

(10) /Z Ao(2)dz = c-w(z) + a1(z) + £(0)

co
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sau, daca notam a(z) = ai(z) + ¢(0), atunci a € R si

(11) /2 Ap(2)dz = c-w(z) + a(z).

o

Derivand relatia (11) dupa z, rezulta
(12) Ao(z) =c-p(z) +d'(z), unde c € Csia € R.

Rezulta atunci ca

F(w,z) = / [c-p(2) - w(z)+d(2)  w(z)+ Ai(2)]dz =

c
=3 w?(2) 4+ a(z) - w(z) + / [A1(2) — a(z) - p(2)] d=.
Sa notam acum
Hw.9) = [ (A1) - ala) - p()] ds = Fw,2) = 5 - w(z) = alz) - w(a)
Atunci H este elementara in raport cu R(w) si, aplicandu-i acestei functii
principiul Laplace-Liouville, exista m € N, exista 5y, -+, G, € C si exista
Vo, V1, ,Um € R(w) asa fel incat
(13) H(w,z) = Zﬁk log(vk(wu'z)) +U0(U),Z>
k=1

La fel cum am demonstrat pentru functia F' obtinem:

OH OH
70’ 35 € Flw)

si, deoarece w este transcendenta in raport cu R, relatia urmatoare (obtinuta
prin derivarea dupa z a lui H)

oOH oOH

(14) Ai(z) —a(z) - p(2) = 3_w(w’z> p(z) + E(U%Z)
este o identitate In w si deci, pentru orice v € C,

d
(15) Ai(z) —a(z) - p(z) = —H(w(z) + 7, 2).

dz
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Integrim aceastd relatie dupé z de la co € C la z € C gi obtinem
o) | :[A1<z> —al2) - p(2))dz = H(w(z) + 7, 2) — H(w(co) + 7, c0)
sau, notand —H (w(co) + 7, o) = c1(7),

am j[m(z) —alz) - p()dz = H(w(z) +7,2) + (7).

Derivam acum (17) dupa ~ si obtinem

OH ,
(18) 0=——(w+72)+aly)
Fie acum ¢; = —¢}(0) € C; din (18) rezulta deci
OH
(19) %(w, Z) = C

de unde rezulta ca exista o functie A : D — C asa fel Incat
(20) H(w,z) =c-w+ A(2).
Functia H(w, z) — ¢; - w = A(z) nu depinde de w si deci A(z) = H(wy, z) —

¢1 - wy, unde wy este fixat in C. Din relatile (13) si (20) deducem ca

A(z) = Zﬁk -log(vk(wo, 2) + vo(wo, 2) — ¢1 - wy.

k=1

Deoarece functiile vo(wo, ), -+ , vm(wo, ) € R rezulta ca A este functie ele-
mentara in raport cu R.
Observam ca membrul intai din relatia (17) nu depinde de ~ si deci

(21) / [Ai(2) — a(2) - p(=)]d= = H(w, =) + e1(0).
Derivand ultima relatie dupa z obtinem

A1(2) —a(z) - p(z) = ¢ - p(z) + A'(2), sau

(22) Ai(z) = (a(2) + 1) - p(2) + A'(2).
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Se observa acum ca putem renota cu a functia a + ¢; si obtinem din nou o

functie din R astfel incat

{ Ao(z) = c-p(z) + d'(2),
A(2) = a(2) - plz) + A(2),

Suficienta. Presupunem ca exista ¢ € C,a € R si A elementara in raport

cu R astfel incat sa fie verificate conditiile teoremei. Atunci

/[Ao(Z)'w(Z)+A1(2)]dZ = /[C-p(Z)~w(2)+a'(Z)-W(Z)+a(2)-p(2)+A'(Z)]dz

unde A este elementara in raport cu R.

c
=5 w?(2) + a(z) - w(z) + A(2)

si deci primitiva lui Ag(z) - w(z) + A1(2) este elementara in raport cu R(w).

Putem remarca imediat ca aceasta primitiva este chiar in R(w) daca si

numai dacad A € R. .

4.3.2 Exemple. (i) Se considera integrala:

= [ k) o (2 )

unde

a). w(z) = log z sau

b). w(z) = arctgz.

Se observd ci, daca notam Ag(z) = 1 + ﬁ si Ai(z) = Z(Zz111) +2+2,
Ap, A1 € R, unde R noteaza corpul Liouville al functiilor rationale (vezi
exemplul 4.1.8). In ambele cazuri w este transcendent in raport cu R si
w' =p € R (in cazul a) w'(z) = L iar In cazul b) w'(z) = 22—1+1)

Observam de asemenea ca a doua conditie din teorema precedenta, A; =
a-p+ A conduce la A” = A —a-p € R (a € R din prima conditie).
Deoarece A’ este o functie rationala A va fi o functie elementara fata de R
(primitiva oricarei functii rationale este o combinatie de functii rationale,
functii logaritm si arctangente si deci apartine unei extensii elementare ale
lui R).

Rezulta ca integrala va fi elementara fata de R(w) daca si numai daca
putem gasi un numar complex ¢ gi o functie a € R asa fel incat Ayp(z) =
c-p(z) +d(2).

In cazul a) ultima relatie revine la

1 2

+ =21 d(2)
z (2412 2 '
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Se observa ca, daca in relatia de mai sus alegem ¢ = 1, obtinem a(z) =

+ ¢; si deci a € R. Putem determina atunci i A din relatia

-1 2 2 1 3-
A’(z)zz——l———i-z—i- — -] -= D4
2(z4+1) =z z

z+1

2
Daca ¢; = 3 rezulta ca A(z) = 5 Se observa ca A € R si ca primitiva este
data de

1 3z+1 22
r = . w? . —.
(w0(z),2) = 5 wh() + T () + 5
Remarcam ca F(w,-) € R(w).
In cazul b) obtinem relatia
1 2
-+ =" 4 a(z)

z (2412 22+1
de unde )
a(z) =logz — 11 © arctgz.

Observam ca, indiferent ce valoare dam lui ¢ € C, a ¢ R. Rezulta ca integrala
nu este elementara fata de R(arctg).
(i) Sa consideram integrala:

F(w(z),z)z/[eﬂ-e*) -w<z)+%-e*+1 dz,

unde w(z) = log z.

Dacd notam cu Ag(z) = = +z- e’ gicu Ay(z) = &£

2z
Ag, Ay € Ri =R (eZQ), unde R este corpul functiilor rationale iar R; este

2 v v
-e* 4+ 1 observam ca

. . . . 2 o . ) v
extensia Liouville a acestuia cu transcendenta e* . Vrem sa verificam daca
F(w,-) este elementara fatd de R;(w). Conditiile din teorema precedenta se
scriu: ]

2 C
—+z-e" =—+d(z2)
z z

2

1 a(z)

— e +1=—>+4 A(2).

2z z ()
Din prima conditie, considerand ¢ = 1 obtinem a(z) = % -7’ Inlocuind in
conditia a doua pe a obtinem A(z) = z si deci integrala:

1 1
Fw(z),z) = 5-10g2z+§-ez2 logz + 2.
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Integrarea unui polinom in w

4.3.3 Teorema. Fie R un corp Liouville pe domeniul D C C, fiep € R

asa fel incat w(z) = fp(z)dz defineste un element transcendent peste R i
ﬁ€ Ao,Al,"' ,An S R.

Conditia necesara si suficientd ca / Z CF. Ap(2)-w"*(2)dz sd defineascd o
k=0

functie elementara in raport cu R(w) este ca sa existe By = ¢ € C, By, -+, B,
€ R si B, 11 elementara in raport cu R astfel incat:

( Ag(z) =c-p(z)+ Bi(z)1
A2) = Bi()-p(2) + 5 B)
| 42 = Bul2)p) + Bl (2).

In acest caz

n+1
1

[ YOk A @ = g S Gl Bule) w1
k=0 k=0

Integrala de mai sus defineste o functie din R(w) dacd si numai daca
B, € R.

Demonstratie. Reamintim ca, deoarece w’ = p € R C R(w), cel mai
mic corp Liouville care contine R §i w este R(w) = {— :PQ e R(X)}

(teorema 4.1.9).
Necesitatea. Presupunem ca

F(w,z) = /ZCS AR(2) - w" R (2)dz

este elementara in raport cu R(w). Principiul lui Laplace-Liouville ne asigura
existenta unui numar natural m € N, a m numere complexe ay, -+ , oy, € C
siam+ 1 functii ug, ug, -+, U, € R(w) asa fel incat

F(w,z) = Z ay - log(ug(w, 2)) + up(w, 2).



4.3. CAZURI PARTICULARE 129

Rezulta atunci ca .
or o Oug . Oug
ow — ow  Ow’

Deoarece functiile u, sunt rationale in variabila w,

e € R(w), de unde

OF
rezulta ca 70 € R(w). Pe de alta parte
w

DO A(z) e = R ((e).2) = vt

F
de unde rezulta ca (Z— € R(w).
2

Deoarece w este transcendent peste R urmatoarea relatie este o identitate
n w:

1) S0k Az w0t = P2y ey + P 2),
k=0

Deci

@) SOk A(z) w2 =, C%F(w(z),z).

In relatia (2) inlocuim w cu w + 7 si obtinem

(3) ;C§~Ak(z)~(w+7)"k:%F(w+7,z),V7€C.

Integram in (3) delacy € Cla z € C

@ [ 300 Ae) - [w(e) + e = Fluw(z) +,2) — Flawleo) +7,co).
Notam —F(w(cy) + 7, co) = ¢(y) si obtinem

) [ YOk A [w(e) Al Rz = Fw(z) +7.2) + (o).

€0 k=0
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Derivand relatia (5) de n — 1 ori dupa ~ obtinem

(6) / “nllA()(w(z) + ) + Az = FOD(w+7,2) + D (),

€o

In relatia (6) facem v = 0 si notdm ¢~V (0) = ¢ € C.

(7) /wMMd@4M@+Aﬂ@Mz:F$imm@+c

€0

Deoarece Fgf;}) € R(w) rezulta ca fcz nl[Ao(2) - w(z) + Ai(2)]dz € R(w)
si atunci, utilizand rezultatul stabilit in teorema precedenta, exista ¢ € C,
exista by, by € R asa fel incat

Ap(2) = e plz) + BL(2)

n!

Deci
ne c
Fqin_})(w, z) = 5 w?(2) 4 by(2) - w(z) + by(2).
Daca ultima relatie o integram dupa w obtinem
_ b
ﬂﬁ%mﬁzéwﬂ@+1?.M@+@@yma+wﬁ

Deoarece Fﬁiz) € R(w) si w este transcendent peste R relatia de mai sus
este o identitate si deci, dand lui w o valoare constanta wg, obtinem b3 € R;
s.a.m.d.

Dupa n — 2 integrari succesive obtinem:

X bn_l(Z) )

C
_ . . b,
! = 1) TS

si, cu acelagi argument de mai sus, b, € R,Vk=1,--- n.
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k!
Vom nota acum B, = - bi,Vk = 0,--- ;n, unde by = ¢ € C; atunci
n!

BOaBly"' aBn€R§1
(8) F! (w, 2) ZC’k Bi(z “(2).

Daca integram relatia (8) inca o data obtinem

1 1
9) CY - Bi( S - Bpy(z) =
(9) Z () g ")+ Ban(2)
1 n+1
— YOk Bl 0T e),
k=0

Din relatia (9), Bny1 = ®(w,-), unde

1 n+1

ZCZfH By(z) w7 (2).

O (w, Zak log(ug(w, 2))+up(w, 2)—

k=1 n+l

Deoarece @/, = 0 (relatia (8) este o identitate in w), ®(w, z) = ®(wy, z) de
unde rezulta ca

n+1

Bn+1 Z()ék log uk(wo, )+U0(w0, ZCTLJrl Bk n+1 k( )7
k=1

ceea ce arata ca B, este elementara in raport cu R.
Din (9) rezulta

n n+1
/Z CF. Ap(z) - w Ch - ) -w TR
k=0
Derivam relatia de mai sus dupa z gi obtinem
n 1 n+1
(10) 3 O Akle) ™ = g D G Ble)
k=0

+

— Y Ck - Bi(z) - (n+ 1= k) -w e p(2).
k=0
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Relatia (10) este o identitate in w si deci putem identifica coeficientii puterilor
egale ale lui w din cei doi membri; se obtine:

B) 0,

Cy - A :nLH (Chp1-Bi+Chyy - By (n+1)-p)
Cnt - Auy =g (O Byt Oid - Buot - 2-p)
cr-A, = o (CZL : B’:l-‘rl + Chyy - Ba “p)

Din relatiile de mai sus rezulta imediat conditiile cerute in teorema.
Se poate ugor remarca din demonstratia de mai sus ca F(w,-) € R(w)
daca si numai daca B, € R.

Suficienta. Presupunem ca exista n € N, exista ¢ = By € C, By,--- ,B, €
R si B, 1 elementara in raport cu R asa fel incat, pentru orice k = 0,--- ,n,
]‘ !/
jik::lgk'l)+_27;fi"8k+r
Atunci

F(w,z) = /ZC’S CAR(Z) WMz =
k=0

n

et [ (B v 4 g Bla(s)) s =

E+1

k=0

— & g Z ck. /Bk(z) p(2) - w R da-
k=1

n+1
n+1 1 ‘
C%l___u/iB/ X n+lfkd — Ll
+; no L k(2) - w z " w" T+
#3(Ch [ Bt ) wtas bl [ B0 4
k=1
1 c -
T 1 “Buia(z) = ] cw™ T 4 Z <C7’f . /Bk(z) p(2) - w" Fda+
k=1
1 k n+l—k

n+1
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n+1—k
n+1

Bia(2) =

Ch [ B ple) ot ) +

n+1
1

L B
n+1 prd

n—+1

Se observa ca F(w,-) este elementara in raport cu R(w).

4.3.4 Exemplu. Sa consideram integrala

/<z2~w2+ & )dz.
z+1

Dacd notam cu Ag(z) = 2% A1(z) = 0 si As(z) = j_
z

Ag, Ay §i As apartin corpului R al functiilor rationale. Sa presupunem ca
w(z) = log z; w este o transcendenta peste R. Relatiile din teorema prece-
denta se scriu in cazul nostru:

T atunci functiile

Bl(Z) 1
z By (2) ,
Z.B
1 > + 5(2)

c 0
B1(2> = % ,
BQ(Z) = —%
Bi(z) =3z+ 22° —3log(z + 1).

Se observa ca By, By, By € R iar Bj este elementar fata de R. Rezulta ca
integrala este elementara fata de R(w) si ca

1 2 2
/(22-w2+ zj—l) dz = g-z3-10g2z—§-23-10gz—log(z+1)+z+§-23.

Remarcam ca integrala nu apartine lui R(w).
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